Modérateur (nucléaire)Placé au cœur d'un réacteur nucléaire, le modérateur est la substance qui ralentit les neutrons sans les absorber, permettant ainsi une réaction nucléaire en chaîne efficace. L'élément retenu pour concevoir le modérateur d'un réacteur nucléaire est le plus souvent soit : de l'hydrogène : réacteur à eau légère ; du deutérium : réacteur à eau lourde ; ou du carbone : réacteur au graphite. Le principe de ralentissement des neutrons est théorisé par le concept de thermalisation des neutrons et est utilisé dans les réacteurs à neutrons thermiques.
Rayonnement cosmiqueLe rayonnement cosmique est le flux de noyaux atomiques et de particules de haute énergie (c'est-à-dire relativistes) qui circulent dans le milieu interstellaire. Le rayonnement cosmique est principalement constitué de particules chargées : protons (88 %), noyaux d'hélium (9 %), antiprotons, électrons, positrons et particules neutres (rayons gamma, neutrinos et neutrons). La source de ce rayonnement se situe selon les cas dans le Soleil, à l'intérieur ou à l'extérieur de notre galaxie.
Réacteur nucléaireUn réacteur nucléaire est un ensemble de dispositifs comprenant du combustible nucléaire, qui constitue le « cœur » du réacteur, dans lequel une réaction en chaîne peut être initiée et contrôlée par des agents humains ou par des systèmes automatiques, suivant des protocoles et au moyen de dispositifs propres à la fission nucléaire. La chaleur ainsi produite est ensuite évacuée et éventuellement convertie en énergie électrique.
DeutériumLe deutérium, noté H ou D, est l'isotope de l'hydrogène dont le nombre de masse est égal à 2 : son noyau atomique, appelé deuton ou deutéron, compte et avec un spin 1+ pour une masse atomique de . Il est caractérisé par un excès de masse de et une énergie de liaison nucléaire par nucléon de . Il s'agit d'un isotope stable découvert en 1931 par Harold Clayton Urey, chimiste à l'université Columbia ; cette découverte lui valut le prix Nobel de chimie en 1934. vignette|Tube à gaz au deutérium.
LithiumLe lithium est l'élément chimique de numéro atomique 3, de symbole Li. C'est un métal alcalin, du premier groupe du tableau périodique des éléments. Les noyaux atomiques des deux isotopes stables du lithium (Li et Li) comptent parmi ceux ayant l'énergie de liaison par nucléon la plus faible de tous les isotopes stables, ce qui signifie que ces noyaux sont assez peu stables comparés à ceux des autres éléments légers. C'est pourquoi ils peuvent être utilisés dans des réactions de fission nucléaire comme de fusion nucléaire.
Température neutroniquevignette|400px|Graphique des fonctions de densité de probabilité de vitesse de la vitesse de quelques gaz nobles à une température de (). Des distributions de vitesse similaires sont obtenues pour des neutrons modérés. La température neutronique, aussi appelée par métonymie « énergie des neutrons », est l'énergie cinétique moyenne d'un neutron libre dans sa population, énergie qui est habituellement donnée en électron-volts (abréviation eV et ses multiples, keV, MeV), la température étant en kelvins (K) ou en degrés Celsius (°C).
Particule βUne particule bêta est issue d'une désintégration bêta, par exemple du potassium 40. Il existe deux formes de particules (et de radioactivité) bêta. Il peut s'agir, dans le cas d'une désintégration de type β−, d'un électron, qui sera alors accompagné d'un anti-neutrino électronique. Cette désintégration est provoquée par un excès de neutrons. Une particule bêta est presque similaire à un autre électron (par exemple, ceux qu'on trouve dans le cortège électronique des atomes ), à la différence près qu'elle possède une hélicité gauche (en dehors de la radioactivité β, les électrons ont globalement une hélicité nulle).
Réaction en chaîne (nucléaire)vignette|redresse=1.3|Schéma d'une réaction en chaîne de fission nucléaire1. Un atome d' absorbe un neutron et se divise en deux nouveaux atomes (produits de fission), relâchant trois nouveaux neutrons et de l'énergie de liaison.2. L'un des neutrons est absorbé par un atome d' et ne continue pas la réaction, un autre neutron est simplement perdu. Cependant, un neutron entre en collision avec un atome d', qui se divise et relâche deux neutrons et de l'énergie de liaison.3.
Neutron cross sectionIn nuclear physics, the concept of a neutron cross section is used to express the likelihood of interaction between an incident neutron and a target nucleus. The neutron cross section σ can be defined as the area in cm2 for which the number of neutron-nuclei reactions taking place is equal to the product of the number of incident neutrons that would pass through the area and the number of target nuclei. In conjunction with the neutron flux, it enables the calculation of the reaction rate, for example to derive the thermal power of a nuclear power plant.
Eau lourdeL'eau lourde ou oxyde de deutérium DO (ou HO) est constituée des mêmes éléments chimiques que l'eau ordinaire (ou HO), mais ses atomes d'hydrogène sont des isotopes lourds, du deutérium (le noyau de deutérium comporte un neutron en plus du proton présent dans tout atome d’hydrogène). C'est Gilbert Lewis qui isola le premier échantillon d'eau lourde pure, en 1933. L'eau semi-lourde, ou eau deutérée, est l'oxyde mixte HDO (ou HHO). Dans les océans, les mers et les eaux de surface, elle est bien plus abondante que l'eau lourde.