Théorème de Siegel-MahlerEn mathématiques, le théorème de Siegel–Mahler ou théorème de Siegel sur les points entiers stipule que pour une courbe algébrique lisse C de genre g > 0 définie sur un corps de nombres K, dans un espace affine, il n'y a qu'un nombre fini de points sur C de coordonnées dans l'anneau de entiers O de K. Le théorème a été prouvé pour la première fois en 1929 par Carl Ludwig Siegel et a été le premier résultat majeur sur le équations diophantiennes qui ne dépendaient que du genre et non d'une forme algébrique particulière des équations.
Théorème de RothEn mathématiques, le théorème de Roth, ou théorème de Thue-Siegel-Roth, est un énoncé de théorie des nombres, concernant plus particulièrement l'approximation diophantienne. Le résultat est le suivant : Pour tout nombre irrationnel algébrique α et pour tout ε > 0, l'inéquation d'inconnues q > 0 et p entiers : n'a qu'un nombre fini de solutions (ce n'est plus le cas pour ε = 0, d'après le théorème d'approximation de Dirichlet).
Gerd FaltingsGerd Faltings, né le à Gelsenkirchen, est un mathématicien allemand connu pour son travail en géométrie algébrique. Il étudie les mathématiques et la physique de 1972 à 1978 à l'université de Münster, où il obtient son doctorat de mathématiques en 1978, puis son habilitation de mathématiques en 1981, après un an à Harvard grâce à une Studienstiftung (bourse d'études très sélective). Durant les années 1978-1981, il est professeur assistant à Münster. Puis il est professeur à l' de 1982 à 1984, et à Princeton de 1985 à 1994.
Théorème de Faltingsvignette|Gerd Faltings. En théorie des nombres, le théorème de Faltings, précédemment connu sous le nom de conjecture de Mordell donne des résultats sur le nombre de solutions d'une équation diophantienne. Il a été conjecturé par le mathématicien anglais Louis Mordell en 1922 et démontré par Gerd Faltings en 1983, soit environ soixante ans après que la conjecture fut posée. Soit l'équation définie de la manière suivante : avec P un polynôme à coefficients rationnels.
Diophantine geometryIn mathematics, Diophantine geometry is the study of Diophantine equations by means of powerful methods in algebraic geometry. By the 20th century it became clear for some mathematicians that methods of algebraic geometry are ideal tools to study these equations. Diophantine geometry is part of the broader field of arithmetic geometry. Four theorems in Diophantine geometry which are of fundamental importance include: Mordell–Weil theorem Roth's theorem Siegel's theorem Faltings's theorem Serge Lang published a book Diophantine Geometry in the area in 1962, and by this book he coined the term "Diophantine Geometry".
Géométrie arithmétiquevignette|Exemples de figures géométriques: un cône et un cylindre. La géométrie arithmétique est une branche de la théorie des nombres, qui utilise des outils de géométrie algébrique pour s'attaquer à des problèmes arithmétiques. Quelques exemples de questions qui peuvent se poser : Si on sait trouver des racines d'une équation polynomiale dans toutes les complétions d'un corps de nombres, peut-on en déduire que cette équation a des racines sur ce corps ? On sait répondre à la question dans certains cas, on sait que la réponse est non dans d'autres cas, mais on pense (c'est une conjecture) connaître l'obstruction et donc savoir reconnaître quand cela fonctionne.
Point rationnelEn théorie des nombres et géométrie algébrique, les points rationnels d'une variété algébrique définie sur un corps sont, lorsque X est définie par un système d'équations polynomiales, les solutions dans k de ce système. Soit une variété algébrique définie sur un corps . Un point est appelé un point rationnel si le corps résiduel de X en x est égal à . Cela revient à dire que les coordonnées du point dans une carte locale affine appartiennent toutes à .
Approximation diophantiennevignette|Meilleurs approximations rationnelles pour les nombres irrationnels Π (vert), e (bleu), φ (rose), √3/2 (gris), 1/√2 (rouge) et 1/√3 (orange) tracées sous forme de pentes y/x avec des erreurs par rapport à leurs vraies valeurs (noirs) par CMG Lee. En théorie des nombres, l'approximation diophantienne, qui porte le nom de Diophante d'Alexandrie, traite de l'approximation des nombres réels par des nombres rationnels.
Arithmetic of abelian varietiesIn mathematics, the arithmetic of abelian varieties is the study of the number theory of an abelian variety, or a family of abelian varieties. It goes back to the studies of Pierre de Fermat on what are now recognized as elliptic curves; and has become a very substantial area of arithmetic geometry both in terms of results and conjectures. Most of these can be posed for an abelian variety A over a number field K; or more generally (for global fields or more general finitely-generated rings or fields).
Méthode de descente infinieLa méthode de descente infinie est un argument mathématique voisin du raisonnement par récurrence, mais aussi du raisonnement par l'absurde, qui utilise le fait qu'une suite d'entiers naturels strictement décroissante est nécessairement finie. Cette méthode repose sur l'une des propriétés des entiers naturels : « tout ensemble non vide d'entiers naturels possède un plus petit élément. » Soit P(n) une propriété faisant intervenir un entier naturel n. On cherche à démontrer que P(n) est fausse pour tout n.