Méthode d'EulerEn mathématiques, la méthode d'Euler, nommée ainsi en l'honneur du mathématicien Leonhard Euler (1707 — 1783), est une procédure numérique pour résoudre par approximation des équations différentielles du premier ordre avec une condition initiale. C'est la plus simple des méthodes de résolution numérique des équations différentielles. thumb|Illustration de la méthode d'Euler explicite : l'avancée se fait par approximation sur la tangente au point initial.
Method of normalsIn calculus, the method of normals was a technique invented by Descartes for finding normal and tangent lines to curves. It represented one of the earliest methods for constructing tangents to curves. The method hinges on the observation that the radius of a circle is always normal to the circle itself. With this in mind Descartes would construct a circle that was tangent to a given curve. He could then use the radius at the point of intersection to find the slope of a normal line, and from this one can easily find the slope of a tangent line.
Couronne (géométrie)En géométrie, une couronne ou plus précisément une couronne circulaire est une région du plan comprise entre deux cercles concentriques de rayons différents. Elle a deux rayons qui sont ceux de chacun des deux cercles. Une couronne sphérique ou couronne solide est une généralisation à trois dimensions de la couronne circulaire. C'est la région entre deux sphères concentriques de rayons différents. Elle a aussi deux rayons. On appelle épaisseur de la couronne la différence des deux rayons, qui vaut (notations de la première image).
Acta EruditorumLes Acta Eruditorum (à partir de 1732 : Nova Acta Eruditorum) sont une revue scientifique mensuelle allemande publiée de 1682 à 1782 à Leipzig par les savants Otto Mencke et Gottfried Wilhelm Leibniz. Créés à l'imitation du Journal des savants, les Acta Eruditorum sont la première revue scientifique en Allemagne (alors Saint-Empire romain germanique). Rédigés en latin, les Acta Eruditorum comprenaient des résumés de nouveaux écrits, des critiques, des sommaires, de courts essais et des notes, essentiellement dans le domaine des sciences naturelles et des mathématiques, mais également dans le domaine de la théologie et de la philosophie.
Théorème de DandelinEn mathématiques, le théorème de Dandelin, ou théorème de Dandelin-Quetelet ou théorème belge sur la section conique, est un théorème portant sur les coniques. Le théorème de Dandelin énonce que, si une ellipse ou une hyperbole est obtenue comme section conique d'un cône de révolution par un plan, alors : il existe deux sphères à la fois tangentes au cône et au plan de la conique (de part et d'autre de ce plan pour l'ellipse et d'un même côté de ce plan pour l'hyperbole) ; les points de tangence des deux sphères au plan sont les foyers de la conique ; les directrices de la conique sont les intersections du plan de la conique avec les plans contenant les cercles de tangences des sphères avec le cône.