Groupe d'homotopieEn mathématiques, et plus particulièrement en topologie algébrique, les groupes d'homotopie sont des invariants qui généralisent la notion de groupe fondamental aux dimensions supérieures. Il y a plusieurs définitions équivalentes possibles. Première définition Soit X un espace topologique et un point de X. Soit la boule unité de dimension i de l'espace euclidien . Son bord est la sphère unité de dimension . Le i-ième groupe d'homotopie supérieur est l'ensemble des classes d'homotopie relative à d'applications continues telle que : .
Théorie de l'homotopieLa théorie de l'homotopie est une branche des mathématiques issue de la topologie algébrique dans laquelle les espaces et applications sont considérés à homotopie près. La notion topologique de déformation est étendue à des contextes algébriques notamment via les structures de complexe différentiel puis d’algèbre A. Étant donné deux équivalences d’homotopie f : X′ → X et g : Y → Y′, l’ensemble des classes d'homotopie des applications continues entre X et Y s’identifie à celui des applications entre X′ et Y′ par composition avec f et g.
Homotopy fiberIn mathematics, especially homotopy theory, the homotopy fiber (sometimes called the mapping fiber) is part of a construction that associates a fibration to an arbitrary continuous function of topological spaces . It acts as a homotopy theoretic kernel of a mapping of topological spaces due to the fact it yields a long exact sequence of homotopy groupsMoreover, the homotopy fiber can be found in other contexts, such as homological algebra, where the distinguished trianglegives a long exact sequence analogous to the long exact sequence of homotopy groups.
Variété différentielleEn mathématiques, les variétés différentielles ou variétés différentiables sont les objets de base de la topologie différentielle et de la géométrie différentielle. Il s'agit de variétés, « espaces courbes » localement modelés sur l'espace euclidien de dimension n, sur lesquelles il est possible de généraliser une bonne part des opérations du calcul différentiel et intégral. Une variété différentielle se définit donc d'abord par la donnée d'une variété topologique, espace topologique localement homéomorphe à l'espace R.
Serre spectral sequenceIn mathematics, the Serre spectral sequence (sometimes Leray–Serre spectral sequence to acknowledge earlier work of Jean Leray in the Leray spectral sequence) is an important tool in algebraic topology. It expresses, in the language of homological algebra, the singular (co)homology of the total space X of a (Serre) fibration in terms of the (co)homology of the base space B and the fiber F. The result is due to Jean-Pierre Serre in his doctoral dissertation. Let be a Serre fibration of topological spaces, and let F be the (path-connected) fiber.
Path space fibrationIn algebraic topology, the path space fibration over a based space is a fibration of the form where is the path space of X; i.e., equipped with the compact-open topology. is the fiber of over the base point of X; thus it is the loop space of X. The space consists of all maps from I to X that may not preserve the base points; it is called the free path space of X and the fibration given by, say, , is called the free path space fibration. The path space fibration can be understood to be dual to the mapping cone.
Espace des lacetsEn mathématiques, l'espace des lacets d'un espace topologique pointé est l'ensemble des applications continues d'un segment dans cet espace, tel que l'image des deux extrémités du segment coïncide avec le point de base. Muni de la topologie compacte-ouverte, il s'agit d'un invariant homotopique. La concaténation et le renversement des lacets en font un h-groupe. L'espace des lacets d'un CW-complexe a le type d'homotopie d'un CW-complexe. L’espace des lacets est la cofibre de l’inclusion de l’espace des chemins pointés dans l’espace des chemins.
Catégorie groupoïdeEn mathématiques, et plus particulièrement en théorie des catégories et en topologie algébrique, la notion de groupoïde généralise à la fois les notions de groupe, de relation d'équivalence sur un ensemble, et de l'action d'un groupe sur un ensemble. Elle a été initialement développée par Heinrich Brandt en 1927. Les groupoïdes sont souvent utilisés pour représenter certaines informations sur des objets topologiques ou géométriques comme les variétés. Un groupoïde est une petite catégorie dans laquelle tout morphisme est un isomorphisme.
Weak equivalence (homotopy theory)In mathematics, a weak equivalence is a notion from homotopy theory that in some sense identifies objects that have the same "shape". This notion is formalized in the axiomatic definition of a . A model category is a with classes of morphisms called weak equivalences, fibrations, and cofibrations, satisfying several axioms. The associated of a model category has the same objects, but the morphisms are changed in order to make the weak equivalences into isomorphisms.
Propriété de relèvement des homotopiesEn mathématiques, en particulier en théorie de l'homotopie en topologie algébrique, la propriété de relèvement des homotopies est une condition technique sur une fonction continue d'un espace topologique E dit total à un autre, B dit espace de base. Moralement, cette propriété énonce que toute homotopie dans l'espace de base se relève en une homotopie dans l'espace total E. Par exemple, un revêtement a une propriété de relèvement local unique des chemins vers un ouvert de la fibre donnée ; l'unicité est due au fait que les fibres d'un revêtement sont des espaces discrets.