redresse=1.6|vignette|Effet du dichroïsme circulaire sur deux rayons lumineux polarisés respectivement circulaire gauche et circulaire droite : ils ne subissent pas la même absorption. On dit qu'un matériau présente un dichroïsme circulaire s'il absorbe différemment la lumière selon que sa polarisation est circulaire droite ou circulaire gauche. La polarisation de toute onde lumineuse peut se décomposer en deux parties : l'une circulaire droite (PCD) et l'autre circulaire gauche (PCG). En présence de dichroïsme circulaire, l'une des deux composantes sera absorbée plus rapidement que l'autre. Cette propriété se rencontre plutôt dans les liquides et les solutions du fait de la structure des molécules. On suppose que c'est le cas pour le reste de l'article. Le phénomène est découvert par le physicien français Aimé Cotton en 1896 . L'absorbance du milieu dichroïque présente deux valeurs, associées respectivement aux deux polarisations circulaires : et . On définit alors la différence entre ces deux absorbances : Cette grandeur dépend de la longueur d'onde, c'est-à-dire de la couleur de l'onde lumineuse utilisée. On peut aussi exprimer l'égalité ci-dessus à l'aide de la loi de Beer-Lambert : où et sont les absorptivités molaires respectives de la lumière PCG et PCD, C est la concentration molaire, et l est la longueur traversée. On définit alors le dichroïsme circulaire par : Cependant la grandeur mesurée n'est pas directement cette dernière. En effet, il est seulement possible de mesurer l'ellipticité grâce à des polariseurs. Cette ellipticité est un angle correspondant à la forme de la polarisation de la lumière : si la polarisation est rectiligne alors , et si la polarisation est circulaire alors . Et au fur et à mesure que la lumière avance dans la solution dichroïque, sa forme se rapproche petit à petit vers un cercle. Autrement dit, son ellipticité s'approche de 45°. Pour relier l'ellipticité mesurée au dichroïsme circulaire, on a recours à une approximation très souvent vérifiée : on suppose que l'effet de ce dichroïsme est faible, c'est-à-dire .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (7)
CH-311: Macromolecular structure and interactions
This course covers the basic biophysical principles governing the thermodynamic and kinetic properties of biomacromolecules involved in chemical processes of life. The course is held in English.
ChE-610: Highlights energy research and chemical engineering 1
Synthesis and design of materials for sustainable energ.This seminar series will invite leading researchers from academia, industry, or government agencies to give insightful talks on state-of-the-art
ChE-611: Highlights energy research and chemical engineering 2
Synthesis and design of materials for sustainable energy.This seminar series will invite leading researchers from academia, industry, or government agencies to give insightful talks on state-of-the-ar
Afficher plus
Publications associées (244)
Concepts associés (16)
Biréfringence
droite|vignette|400px|Le texte apparait en double après avoir traversé le cristal de calcite. C'est la double réfraction, un phénomène caractéristique des milieux biréfringents. La biréfringence est la propriété physique d'un matériau dans lequel la lumière se propage de façon anisotrope. Dans un milieu biréfringent, l'indice de réfraction n'est pas unique, il dépend de la direction de polarisation de l'onde lumineuse. Un effet spectaculaire de la biréfringence est la double réfraction par laquelle un rayon lumineux pénétrant dans le cristal est divisé en deux.
Pouvoir rotatoire
Le pouvoir rotatoire, est l'angle de déviation du plan de polarisation d'une lumière polarisée rectilignement, pour un observateur situé en face du faisceau incident. Il est lié à l'activité optique ou biréfringence circulaire, qui est la propriété qu'ont certains milieux (optiquement actifs) de faire tourner le vecteur d'un faisceau lumineux les traversant. Parfois, par abus de langage, le terme de pouvoir rotatoire est employé à la place d'activité optique.
Structure secondaire
thumb|200px|Schéma de la structure tridimensionnelle de la protéine myoglobine. Cette structure contient de hélices α mais pas de feuillets β. Cette protéine est la première dont la structure a été résolue par cristallographie en 1958, par Max Perutz et John Kendrew, ce qui leur a valu l'attribution du prix Nobel de chimie en 1962. En biochimie et en biologie structurale, la structure secondaire se rapporte uniquement à la description de la structure tridimensionnelle localement adoptée par certains segments de molécules biologiques (molécules définies comme étant des biopolymères, comme c’est le cas pour les protéines et les acides nucléiques (ADN/ARN)).
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.