Explore les statistiques graphiques, la génération aléatoire de graphiques, l'analyse de réseaux, les mesures de centralité et les coefficients de regroupement.
Explore l'estimation stochastique du modèle de bloc, le regroupement spectral, la modularité du réseau, la matrice laplacienne et le regroupement des moyennes k.
Couvre les propriétés stochastiques, les structures du réseau, les modèles, les statistiques, les mesures de centralité et les méthodes d'échantillonnage dans l'analyse des données du réseau.
Couvre les bases des réseaux, en mettant l'accent sur les réseaux du cerveau, les percées historiques, les découvertes de petits mondes et de réseaux sans échelle, et l'importance du connectome humain.