Concept

Divisibilité

En arithmétique, on dit qu'un entier a est divisible par un entier b s'il existe un entier k tel que a = bk. On dit alors que a est un multiple de b, et que b divise a ou est un diviseur de a. La relation de divisibilité se note à l'aide d'une barre verticale : b divise a se note b|a et ne doit pas se confondre avec le résultat de la division de a par b noté a/b. La notion de divisibilité, c'est-à-dire la capacité d'être divisible, fonde l'étude de l'arithmétique, mais se généralise aussi à tout anneau commutatif. C'est ainsi que l'on peut aussi parler de divisibilité dans un anneau de polynômes. La notion de divisibilité est originaire de la notion de distribution en parts égales et est associée à la notion de division euclidienne : pour tous entiers naturels non nuls, a est divisible par b si et seulement si la division euclidienne de a par b est exacte (i.e. a pour reste 0). La définition précédemment donnée permet de généraliser la notion à tout entier. On remarque alors que 1 divise tout entier naturel et que 0 est divisible par tout entier naturel. Dans l'ensemble des entiers naturels, la relation « divise » est une relation d'ordre partiel ; en effet la relation est : réflexive : a|a ; transitive : si a|b et b|c alors a|c ; antisymétrique : si a|b et b|a alors a = b. Dans cette relation d'ordre, 1 est le plus petit élément et 0 est le plus grand élément. Toute paire d'entiers naturels {a, b} possède un plus grand commun diviseur noté pgcd(a,b) et un plus petit commun multiple noté ppcm(a,b) qui sont respectivement la borne inférieure et la borne supérieure de {a, b} pour cette relation d'ordre. L'ensemble des entiers naturels, muni de la relation de divisibilité et des opérations pgcd et ppcm, est un exemple de treillis. La relation de divisibilité a un comportement relativement stable avec l'addition, la soustraction, la multiplication et la simplification : si a divise b et a divise c alors a divise b + c, |b – c| et kb pour tout entier k ; si c est un entier non nul, a |b si et seulement si ac|bc.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.