In mathematics, the Riemann–Stieltjes integral is a generalization of the Riemann integral, named after Bernhard Riemann and Thomas Joannes Stieltjes. The definition of this integral was first published in 1894 by Stieltjes. It serves as an instructive and useful precursor of the Lebesgue integral, and an invaluable tool in unifying equivalent forms of statistical theorems that apply to discrete and continuous probability.
The Riemann–Stieltjes integral of a real-valued function of a real variable on the interval with respect to another real-to-real function is denoted by
Its definition uses a sequence of partitions of the interval
The integral, then, is defined to be the limit, as the mesh (the length of the longest subinterval) of the partitions approaches , of the approximating sum
where is in the -th subinterval . The two functions and are respectively called the integrand and the integrator. Typically is taken to be monotone (or at least of bounded variation) and right-semicontinuous (however this last is essentially convention). We specifically do not require to be continuous, which allows for integrals that have point mass terms.
The "limit" is here understood to be a number A (the value of the Riemann–Stieltjes integral) such that for every ε > 0, there exists δ > 0 such that for every partition P with norm(P) < δ, and for every choice of points ci in [xi, xi+1],
The Riemann–Stieltjes integral admits integration by parts in the form
and the existence of either integral implies the existence of the other.
On the other hand, a classical result shows that the integral is well-defined if f is α-Hölder continuous and g is β-Hölder continuous with α + β > 1 .
If is bounded on , increases monotonically, and is Riemann integrable, then the Riemann–Stieltjes integral is related to the Riemann integral by
For a step function
where , if is continuous at , then
If g is the cumulative probability distribution function of a random variable X that has a probability density function with respect to Lebesgue measure, and f is any function for which the expected value is finite, then the probability density function of X is the derivative of g and we have
But this formula does not work if X does not have a probability density function with respect to Lebesgue measure.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course is an introduction to the spectral theory of linear operators acting in Hilbert spaces. The main goal is the spectral decomposition of unbounded selfadjoint operators. We will also give el
Dans ce cours, nous étudierons les notions fondamentales de l'analyse réelle, ainsi que le calcul différentiel et intégral pour les fonctions réelles d'une variable réelle.
En mathématiques, l’intégrale de Lebesgue désigne à la fois une théorie relative à l'intégration et à la mesure, et le résultat de l'intégration d'une fonction à valeurs réelles définie sur (ou sur ) muni de la mesure de Lebesgue. Généralisant l'intégrale de Riemann, l'intégrale de Lebesgue joue un rôle important en analyse, en théorie des probabilités et dans beaucoup d'autres domaines des mathématiques. Dans les cas simples, l'intégrale d'une fonction positive f peut être vue comme l'aire comprise entre l'axe des x (l'axe horizontal) et la courbe de la fonction f.
En mathématiques, l'intégration ou calcul intégral est l'une des deux branches du calcul infinitésimal, l'autre étant le calcul différentiel. Les intégrales sont utilisées dans de multiples disciplines scientifiques notamment en physique pour des opérations de mesure de grandeurs (longueur d'une courbe, aire, volume, flux) ou en probabilités. Ses utilités pluridisciplinaires en font un outil scientifique fondamental. C'est la raison pour laquelle l'intégration est souvent abordée dès l'enseignement secondaire.
We construct divergence-free Sobolev vector fields in C([0,1];W-1,W-r(T-d;Rd)) with r < d and d\geq 2 which simultaneously admit any finite number of distinct positive solutions to the continuity equation. These vector fields are then shown to have at leas ...
We study the limit behaviour of sequences of non-convex, vectorial, random integral functionals, defined on W1,1, whose integrands are ergodic and satisfy degenerate linear growth conditions. The latter involve suitable random, scale-dependent weight-funct ...
In this paper we derive quantitative estimates in the context of stochastic homogenization for integral functionals defined on finite partitions, where the random surface integrand is assumed to be stationary. Requiring the integrand to satisfy in addition ...