Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore Support Vector Machines, couvrant la marge ferme, la marge souple, la perte de charnière, la comparaison des risques et la perte de charnière quadratique.
Couvre la minimisation empirique des risques, l'apprentissage statistique et des exemples de prédiction du cancer, de prix des maisons et de génération d'images.
Explore la maximisation des marges pour une meilleure classification à l'aide de machines vectorielles de support et l'importance de choisir le bon paramètre.
Couvre les modèles d'apprentissage statistique, la minimisation des risques et la minimisation empirique des risques avec des exemples d'estimateurs de probabilité maximale.
Explore l'optimisation robuste dans la radiothérapie et les machines vectorielles de soutien, en mettant l'accent sur les scénarios les plus défavorables et l'utilisation de règles de décision linéaires.
Couvre les méthodes de prédiction sans modèle dans l'apprentissage par renforcement, en se concentrant sur Monte Carlo et les différences temporelles pour estimer les fonctions de valeur sans connaissance de la dynamique de transition.