Explore la dérivée des longueurs de courbe, des déformations à extrémité fixe, des géodésiques, des typologies de points de surface et de la paramétrisation de sphère.
Introduit les bases de la géométrie différentielle pour les courbes et les surfaces paramétriques, la courbure de couverture, les vecteurs tangents et l'optimisation des surfaces.
Explore le théorème de Green appliqué aux intégrales de surface, en mettant l'accent sur les surfaces régulières et en coordonnant les transformations.