Angles d'EulerEn mécanique et en mathématiques, les angles d'Euler sont des angles introduits par Leonhard Euler (1707-1783) pour décrire l'orientation d'un solide ou celle d'un référentiel par rapport à un trièdre cartésien de référence. Au nombre de trois, ils sont appelés angle de précession, de nutation et de rotation propre, les deux premiers pouvant être vus comme une généralisation des deux angles des coordonnées sphériques. Le mouvement d'un solide par rapport à un référentiel (un avion dans l'air, un sous-marin dans l'eau, des skis sur une pente.
Contrôle d'attitudeLe contrôle d'attitude est le processus qui permet de contrôler l'attitude (c'est-à-dire l'orientation dans l'espace) d'un engin aérospatial : aéronef, missile ou véhicule spatial tels qu'un satellite artificiel, une sonde spatiale, une station spatiale ou un lanceur - de manière que cet engin puisse remplir ses objectifs. Un engin aérospatial, même placé dans l'espace, subit des forces qui modifient plus ou moins rapidement son orientation.
Rotation formalisms in three dimensionsIn geometry, various formalisms exist to express a rotation in three dimensions as a mathematical transformation. In physics, this concept is applied to classical mechanics where rotational (or angular) kinematics is the science of quantitative description of a purely rotational motion. The orientation of an object at a given instant is described with the same tools, as it is defined as an imaginary rotation from a reference placement in space, rather than an actually observed rotation from a previous placement in space.
Navigation inertiellevignette|295x295px|Centrale à inertie du missile S3, Musée de l'Air et de l'Espace, Paris Le Bourget (France) La navigation inertielle (en anglais, inertial navigation system ou INS) est une technique utilisant des capteurs d’accélération et de rotation afin de déterminer le mouvement absolu d’un véhicule (avion, missile, sous-marin...). Elle a l’avantage d’être totalement autonome. La navigation inertielle a été utilisée sur les V1 et V2 allemands. Charles Stark Draper est connu comme le « père de la navigation inertielle ».
Matrice de rotationEn mathématiques, et plus précisément en algèbre linéaire, une matrice de rotation Q est une matrice orthogonale de déterminant 1, ce qui peut s'exprimer par les équations suivantes : QtQ = I = QQt et det Q = 1, où Qt est la matrice transposée de Q, et I est la matrice identité. Ces matrices sont exactement celles qui, dans un espace euclidien, représentent les isométries (vectorielles) directes.
Quaternions et rotation dans l'espaceLes quaternions unitaires fournissent une notation mathématique commode pour représenter l'orientation et la rotation d'objets en trois dimensions. Comparés aux angles d'Euler, ils sont plus simples à composer et évitent le problème du blocage de cardan. Comparés aux matrices de rotations, ils sont plus stables numériquement et peuvent se révéler plus efficaces. Les quaternions ont été adoptés dans des applications en infographie, robotique, navigation, dynamique moléculaire et en mécanique spatiale des satellites.