Scalar potentialIn mathematical physics, scalar potential, simply stated, describes the situation where the difference in the potential energies of an object in two different positions depends only on the positions, not upon the path taken by the object in traveling from one position to the other. It is a scalar field in three-space: a directionless value (scalar) that depends only on its location. A familiar example is potential energy due to gravity.
Causalité (physique)En physique, le principe de causalité affirme que si un phénomène (nommé cause) produit un autre phénomène (nommé effet), alors la cause précède l'effet (ordre temporel). Le principe de causalité est une des contraintes réalistes imposées à toute théorie mathématiquement cohérente afin qu'elle soit physiquement admissible. D'après Gilles Cohen-Tannoudji, . À ce jour, il n'a pas été mis en défaut par l’expérience, mais certaines théories envisagent une causalité inversée.
Force de maréeLa force de marée est une force qui s'exerce cycliquement sur les couches superficielles de deux corps célestes qui tournent autour du centre d'inertie du système, et qui est à l'origine des marées (sur Terre, les marées océaniques, atmosphériques et terrestres). Elle résulte du déséquilibre entre la force d'attraction gravitationnelle des deux corps et la force d'inertie d'entraînement due au mouvement de révolution.
Harmonique sphériqueEn mathématiques, les harmoniques sphériques sont des fonctions harmoniques particulières, c'est-à-dire des fonctions dont le laplacien est nul. Les harmoniques sphériques sont particulièrement utiles pour résoudre des problèmes invariants par rotation, car elles sont les vecteurs propres de certains opérateurs liés aux rotations. Les polynômes harmoniques P(x,y,z) de degré l forment un espace vectoriel de dimension 2 l + 1, et peuvent s'exprimer en coordonnées sphériques (r, θ, φ) comme des combinaisons linéaires des (2 l + 1) fonctions : avec .
Calcul différentielalt=|vignette| Le graphe d'une fonction arbitraire (bleu). Graphiquement, la dérivée de en est la pente de la droite orange (tangente à la courbe en ). En mathématiques, le calcul différentiel est un sous-domaine de l'analyse qui étudie les variations locales des fonctions. C'est l'un des deux domaines traditionnels de l'analyse, l'autre étant le calcul intégral, utilisé notamment pour calculer l'aire sous une courbe.
Équation de PoissonEn analyse vectorielle, l'équation de Poisson (ainsi nommée en l'honneur du mathématicien et physicien français Siméon Denis Poisson) est l'équation aux dérivées partielles elliptique du second ordre suivante : où est l'opérateur laplacien et est une distribution généralement donnée. Sur un domaine borné de et de frontière régulière, le problème de trouver à partir de et satisfaisant certaines conditions aux limites appropriées est un problème bien posé : la solution existe et est unique.
Mécanique célestethumb|Paramètres d'une orbite elliptique. La mécanique céleste décrit le mouvement d'objets astronomiques tels que les étoiles et planètes à l'aide de théories physiques et mathématiques. Les domaines de la physique les plus directement concernés sont la cinématique et la dynamique (classique ou relativiste). Dans l'Antiquité, on distingue la mécanique céleste de la mécanique terrestre, les deux mondes étant considérés comme étant régis par des lois complètement différentes (ici-bas, les « choses » « tombent », là-haut elles se « promènent »).
Indice adiabatiqueEn thermodynamique, l'indice adiabatique d'un gaz (corps pur ou mélange), aussi appelé coefficient adiabatique, exposant adiabatique ou coefficient de Laplace, noté , est défini comme le rapport de ses capacités thermiques à pression constante (isobare) et à volume constant (isochore) : Le coefficient de Laplace se définit également à partir des capacités thermiques molaires et si la transformation concerne moles de gaz, ou des capacités thermiques massiques (ou spécifiques) et si la transformation concerne
Vitesse du sonvignette|Un F/A-18 Hornet se déplaçant à une vitesse proche de celle du son lors d'un passage dans une zone de condensation d'air humide. La vitesse du son, ou célérité du son, est la vitesse de propagation des ondes sonores dans tous les milieux gazeux, liquides ou solides. Elle peut donc être déterminée pour des matériaux autres que l'air, dans lesquels le son ne peut être perçu par l'oreille humaine. Dans un fluide quelconque, quelles que soient les conditions de pression et température, la vitesse du son dépend de la compressibilité isentropique et de la masse volumique du milieu de propagation de l'onde.
Laplacien discretEn mathématiques, le laplacien discret est une analogie du laplacien continu adaptée au cas de problèmes discret (graphes, par exemple). Il est notamment employé en analyse numérique, par exemple dans le cadre de la résolution de l'équation de la chaleur par la méthode des différences finies, ou en pour la détection de contours. Soit une fonction réelle de deux variables réelles et et . On définit le laplacien discret de comme la somme des dérivées secondes discrètes selon et selon , soit : L'exemple précédent est décrit dans une grille régulière cartésienne de dimension (plan).