Théorie des types homotopiquesvignette| Couverture de la Théorie des types homotopiques : Fondations univalentes des mathématiques. Dans la logique mathématique et de l’informatique, la théorie des types homotopiques (en anglais : Homotopy Type Theory HoTT) fait référence à différentes lignes de développement de la théorie des types intuitionnistes, basée sur l’interprétation des types comme des objets auxquels l’intuition de la théorie de l’homotopie s’applique.
Idris (programming language)Idris is a purely-functional programming language with dependent types, optional lazy evaluation, and features such as a totality checker. Idris may be used as a proof assistant, but is designed to be a general-purpose programming language similar to Haskell. The Idris type system is similar to Agda's, and proofs are similar to Coq's, including tactics (theorem proving functions/procedures) via elaborator reflection. Compared to Agda and Coq, Idris prioritizes management of side effects and support for embedded domain-specific languages.
Logique d'ordre supérieurLes logiques d'ordre supérieur (en anglais, higher-order logic ou HOL) sont des logiques formelles permettant d'utiliser des variables qui réfèrent à des fonctions ou à des prédicats. Elles étendent le calcul des prédicats. Cela revient à dire que l'on considère les fonctions et prédicats comme des objets de base à part entière, au même titre que, par exemple, un nombre entier. On s'autorisera ainsi, d'une part, à quantifier les prédicats et les fonctions et, d'autre part, à donner des fonctions ou des prédicats en arguments à d'autres fonctions ou prédicats.
Assistant de preuveEn informatique (ou en mathématiques assistées par informatique), un assistant de preuve est un logiciel permettant la vérification de preuves mathématiques, soit sur des théorèmes au sens usuel des mathématiques, soit sur des assertions relatives à l'exécution de programmes informatiques. Beaucoup de projets ont été lancés pour formaliser les mathématiques, en 1966, Nicolaas de Bruijn lance le projet Automath, suivi par d'autres projets.
Constructivisme (mathématiques)En philosophie des mathématiques, le constructivisme est une position vis-à-vis des mathématiques qui considère que l'on ne peut effectivement démontrer l'existence d'objets mathématiques qu'en donnant une construction de ceux-ci, une suite d'opérations mentales qui conduit à l'évidence de l'existence de ces objets. En particulier, les constructivistes ne considèrent pas que le raisonnement par l'absurde est universellement valide, une preuve d'existence par l'absurde (c-à-d une preuve où la non-existence entraîne une contradiction) ne conduisant pas en soi à une construction de l'objet.
Déduction naturelleEn logique mathématique, la déduction naturelle est un système formel où les règles de déduction des démonstrations sont proches des façons naturelles de raisonner. C'est une étape importante de l'histoire de la théorie de la démonstration pour plusieurs raisons : contrairement aux systèmes à la Hilbert fondés sur des listes d'axiomes logiques plus ou moins ad hoc, la déduction naturelle repose sur un principe systématique de symétrie : pour chaque connecteur, on donne une paire de règles duales (introduction/élimination) ; elle a conduit Gentzen à inventer un autre formalisme très important en théorie de la démonstration, encore plus « symétrique » : le calcul des séquents ; elle a permis dans les années 1960 d'identifier la première instance de l'isomorphisme de Curry-Howard.
Système U (mathématiques)En logique mathématique, le Système U et le Système U− sont des systèmes de types purs, c'est-à-dire des formes spéciales d'un calcul lambda typé avec un nombre arbitraire de sortes, d'axiomes et de règles (ou de relations entre les sortes). Ils ont tous deux été prouvés incohérents par Jean-Yves Girard en 1972. Ce résultat conduit alors à ce que la théorie des types de Martin-Löf de 1971 est incohérente car elle permet le même comportement de «type dans le type» que le paradoxe de Girard exploite.
MatitaMatita is an experimental proof assistant under development at the Computer Science Department of the University of Bologna. It is a tool aiding the development of formal proofs by man-machine collaboration, providing a programming environment where formal specifications, executable algorithms and automatically verifiable correctness certificates naturally coexist. Matita is based on a dependent type system known as the Calculus of (Co)Inductive Constructions (a derivative of Calculus of Constructions), and is compatible, to some extent, with Coq.