En mathématiques, et plus précisément en analyse convexe, le sous-différentiel est un concept permettant de décrire la variation locale d'une fonction convexe (à valeurs réelles donc) non nécessairement différentiable dans un sens classique, celui auquel on attache aujourd'hui le nom de Fréchet. Au lieu d'être la pente de l'application linéaire tangente (c'est-à-dire, la dérivée) au point considéré, qui n'existe pas nécessairement, le sous-différentiel d'une fonction convexe est l'ensemble des pentes de toutes les minorantes affines de la fonction, qui sont exactes en ce point, c'est-à-dire qui ont en ce point la même valeur que la fonction convexe qu'elles minorent. Dans cette description, le mot pente peut être entendu comme un élément de l'espace dual. La convexité de la fonction assure qu'on peut lui trouver des minorantes affines exactes en presque tout point de son domaine ; on met donc à profit cette propriété pour définir le sous-différentiel. Si l'on peut trouver une minorante affine exacte en un point donné, on dit que la fonction convexe est sous-différentiable en ce point. On sait que la notion de dérivée est fondamentale en analyse car elle permet d'approcher localement des fonctions par des modèles linéaires, plus simples à étudier. Ces modèles fournissent des renseignements sur les fonctions qu'ils approchent, si bien que de nombreuses questions d'analyse passent par l'étude des fonctions linéarisées (stabilité, inversibilité locale, etc). On rencontre beaucoup de fonctions convexes qui ne sont pas différentiables au sens classique, en particulier lorsque celles-ci résultent de constructions qui n'ont rien pour assurer la différentiabilité des fonctions qu'elles produisent. Il en est ainsi de la fonction duale associée à un problème d'optimisation sous contraintes, pour en citer un exemple emblématique. Pour ces fonctions convexes non lisses, le sous-différentiel joue donc un rôle similaire à celui de la dérivée des fonctions plus régulières.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (6)
CS-439: Optimization for machine learning
This course teaches an overview of modern optimization methods, for applications in machine learning and data science. In particular, scalability of algorithms to large datasets will be discussed in t
EE-556: Mathematics of data: from theory to computation
This course provides an overview of key advances in continuous optimization and statistical analysis for machine learning. We review recent learning formulations and models as well as their guarantees
CS-433: Machine learning
Machine learning methods are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analyzed and pr
Afficher plus
Séances de cours associées (29)
Méthodes d'optimisation : Convexité et descente progressive
Explore les méthodes d'optimisation, y compris la convexité, la descente en gradient et la minimisation non convexe, avec des exemples comme l'estimation de la probabilité maximale et la régression des crêtes.
Rôle du calcul dans l'optimisation
Explore le rôle du calcul dans l'optimisation, en se concentrant sur la descente de gradient pour les problèmes convexes et non convexes.
Opérateurs proximaux : méthodes d'optimisation
Explore les opérateurs proximaux, les méthodes de sous-gradient et la minimisation des composites en optimisation.
Afficher plus
Publications associées (5)
Concepts associés (2)
Optimisation convexe
vignette|320x320px|Optimisation convexe dans un espace en deux dimensions dans un espace contraint L'optimisation convexe est une sous-discipline de l'optimisation mathématique, dans laquelle le critère à minimiser est convexe et l'ensemble admissible est convexe. Ces problèmes sont plus simples à analyser et à résoudre que les problèmes d'optimisation non convexes, bien qu'ils puissent être NP-difficile (c'est le cas de l'optimisation copositive). La théorie permettant d'analyser ces problèmes ne requiert pas la différentiabilité des fonctions.
Fonction convexe
vignette|upright=1.5|droite|Fonction convexe. En mathématiques, une fonction réelle d'une variable réelle est dite convexe : si quels que soient deux points et du graphe de la fonction, le segment est entièrement situé au-dessus du graphe, c’est-à-dire que la courbe représentative de la fonction se situe toujours en dessous de ses cordes ; ou si l'épigraphe de la fonction (l'ensemble des points qui sont au-dessus de son graphe) est un ensemble convexe ; ou si vu d'en dessous, le graphe de la fonction est en bosse.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.