Résumé
En mathématiques, l'algèbre d'un groupe fini est un cas particulier d'algèbre d'un monoïde qui s'inscrit dans le cadre de la théorie des représentations d'un groupe fini. Une algèbre d'un groupe fini est la donnée d'un groupe fini, d'un espace vectoriel de dimension l'ordre du groupe et d'une base indexée par le groupe. La multiplication des éléments de la base est obtenue par la composition des index à l'aide de la loi du groupe, elle est prolongée sur toute la structure par linéarité. Une telle structure est une algèbre semi-simple, elle dispose de toute une théorie dont le théorème d'Artin-Wedderburn est le pilier. Cette approche apporte un nouvel angle d'analyse pour la représentation des groupes. Elle permet d'établir par exemple, le théorème de réciprocité de Frobenius, celui d'Artin ou par exemple le . L'objectif est l'étude des représentations d'un groupe fini G sous un angle particulier. Dans un premier temps, une unique représentation est étudiée, la représentation régulière. L'ensemble de départ est linéarisé, c’est-à-dire qu'il est identifié à l'espace vectoriel sur le corps K de la représentation, le groupe devenant la base canonique de l'espace. Le morphisme de groupes de G dans le groupe linéaire de l'espace vectoriel est prolongé par linéarité. On obtient une structure d'algèbre associative sur un corps commutatif, noté K[G] (pour les notations, voir l'article polynôme en plusieurs indéterminées). Avec les caractères, cette approche est l'un des deux piliers de la théorie des représentations. Le théorème de Maschke démontre que si l'ordre du groupe n'est pas un multiple de la caractéristique du corps K, l'algèbre est semi-simple. Cette structure, objet d'une vaste théorie, permet la démonstration de résultats variés grâce à ses nombreux théorèmes. L'un des plus importants est sans doute celui d'Artin-Wedderburn, il indique que si le polynôme Xg – 1 est scindé, l'algèbre est isomorphe à une somme directe d'algèbres des endomorphismes sur des K-espaces vectoriels de dimensions finies.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.