En mathématiques, l'algèbre d'un groupe fini est un cas particulier d'algèbre d'un monoïde qui s'inscrit dans le cadre de la théorie des représentations d'un groupe fini.
Une algèbre d'un groupe fini est la donnée d'un groupe fini, d'un espace vectoriel de dimension l'ordre du groupe et d'une base indexée par le groupe. La multiplication des éléments de la base est obtenue par la composition des index à l'aide de la loi du groupe, elle est prolongée sur toute la structure par linéarité. Une telle structure est une algèbre semi-simple, elle dispose de toute une théorie dont le théorème d'Artin-Wedderburn est le pilier.
Cette approche apporte un nouvel angle d'analyse pour la représentation des groupes. Elle permet d'établir par exemple, le théorème de réciprocité de Frobenius, celui d'Artin ou par exemple le .
L'objectif est l'étude des représentations d'un groupe fini G sous un angle particulier. Dans un premier temps, une unique représentation est étudiée, la représentation régulière. L'ensemble de départ est linéarisé, c’est-à-dire qu'il est identifié à l'espace vectoriel sur le corps K de la représentation, le groupe devenant la base canonique de l'espace. Le morphisme de groupes de G dans le groupe linéaire de l'espace vectoriel est prolongé par linéarité. On obtient une structure d'algèbre associative sur un corps commutatif, noté K[G] (pour les notations, voir l'article polynôme en plusieurs indéterminées). Avec les caractères, cette approche est l'un des deux piliers de la théorie des représentations.
Le théorème de Maschke démontre que si l'ordre du groupe n'est pas un multiple de la caractéristique du corps K, l'algèbre est semi-simple. Cette structure, objet d'une vaste théorie, permet la démonstration de résultats variés grâce à ses nombreux théorèmes. L'un des plus importants est sans doute celui d'Artin-Wedderburn, il indique que si le polynôme Xg – 1 est scindé, l'algèbre est isomorphe à une somme directe d'algèbres des endomorphismes sur des K-espaces vectoriels de dimensions finies.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Algebraic K-theory, which to any ring R associates a sequence of groups, can be viewed as a theory of linear algebra over an arbitrary ring. We will study in detail the first two of these groups and a
This course is aimed to give students an introduction to the theory of algebraic curves, with an emphasis on the interplay between the arithmetic and the geometry of global fields. One of the principl
This year's topic is "Adelic Number Theory" or how the language of adeles and ideles and harmonic analysis on the corresponding spaces can be used to revisit classical questions in algebraic number th
In order theory, a field of mathematics, an incidence algebra is an associative algebra, defined for every locally finite partially ordered set and commutative ring with unity. Subalgebras called reduced incidence algebras give a natural construction of various types of generating functions used in combinatorics and number theory. A locally finite poset is one in which every closed interval [a, b] = {x : a ≤ x ≤ b} is finite.
En algèbre, le terme de polynôme formel, ou simplement polynôme, est le nom générique donné aux éléments d'une structure construite à partir d'un ensemble de nombres. On considère un ensemble A de nombres, qui peut être celui des entiers ou des réels, et on lui adjoint un élément X, appelé indéterminée. La structure est constituée par les nombres, le polynôme X, les puissances de X multipliées par un nombre, aussi appelés monômes (de la forme aX), ainsi que les sommes de monômes. La structure est généralement notée A[X].
En mathématiques et plus précisément en théorie des groupes, le groupe des quaternions est l'un des deux groupes non abéliens d'ordre 8. Il admet une représentation réelle irréductible de degré 4, et la sous-algèbre des matrices 4×4 engendrée par son image est un corps gauche qui s'identifie au corps des quaternions de Hamilton. Le groupe des quaternions est souvent désigné par le symbole Q ou Q8 et est écrit sous forme multiplicative, avec les 8 éléments suivants : Ici, 1 est l'élément neutre, et pour tout a dans Q.
Couvre le concept de cohomologie de groupe, se concentrant sur les complexes de chaîne, les complexes de cochain, les produits de tasse et les anneaux de groupe.
Explore la structure et le mécanisme de la synthase ATP, en se concentrant sur la façon dont elle génère des molécules ATP à l'aide d'un gradient de protons et de l'interconversion des états de sous-unités bêta.
Explore le théorème de Wedderburn, les algèbres de groupe et le théorème de Maschke dans le contexte des algèbres simples de dimension finie et de leurs endomorphismes.
Let G be a simple linear algebraic group defined over an algebraically closed field of characteristic p ≥ 0 and let φ be a nontrivial p-restricted irreducible representation of G. Let T be a maximal torus of G and s ∈ T . We say that s is Ad-regular if α(s ...
We define twisted composition products of symmetric sequences via classifying morphisms rather than twisting cochains. Our approach allows us to establish an adjunction that simultaneously generalizes a classic one for algebras and coalgebras, and the bar- ...
The eukaryotic cytosolic chaperonin, t-complex polypeptide 1 (TCP-1) ring complex or TRiC, is responsible for folding a tenth of the proteins in the cell. TRiC is a double-ringed barrel with each ring composed of eight different CCT (chaperonin containing ...