Explore les techniques bayésiennes pour les problèmes de valeur extrême, y compris l'inférence de la chaîne Markov Monte Carlo et de Bayesian, en soulignant l'importance de l'information antérieure et l'utilisation des graphiques.
Introduit les types de variables, la distribution multinomiale, les caractéristiques des données, les formes des densités, la corrélation et les méthodes de visualisation des données.
Explore les mots, les jetons, les n-grammes et les modèles linguistiques, en mettant l'accent sur les approches probabilistes pour l'identification des langues et la correction des erreurs d'orthographe.
S'inscrit dans les limites fondamentales de l'apprentissage par gradient sur les réseaux neuronaux, couvrant des sujets tels que le théorème binôme, les séries exponentielles et les fonctions génératrices de moments.
Explore la cohérence prédictive dans les systèmes de prévision séquentielle, en mettant l'accent sur l'utilité de la prédiction sur l'estimation et sur l'importance des approches préalables.