Concept

Espace de Cantor

In mathematics, a Cantor space, named for Georg Cantor, is a topological abstraction of the classical Cantor set: a topological space is a Cantor space if it is homeomorphic to the Cantor set. In set theory, the topological space 2ω is called "the" Cantor space. The Cantor set itself is a Cantor space. But the canonical example of a Cantor space is the countably infinite topological product of the discrete 2-point space {0, 1}. This is usually written as or 2ω (where 2 denotes the 2-element set {0,1} with the discrete topology). A point in 2ω is an infinite binary sequence, that is a sequence that assumes only the values 0 or 1. Given such a sequence a0, a1, a2,..., one can map it to the real number This mapping gives a homeomorphism from 2ω onto the Cantor set, demonstrating that 2ω is indeed a Cantor space. Cantor spaces occur abundantly in real analysis. For example, they exist as subspaces in every perfect, complete metric space. (To see this, note that in such a space, any non-empty perfect set contains two disjoint non-empty perfect subsets of arbitrarily small diameter, and so one can imitate the construction of the usual Cantor set.) Also, every uncountable, separable, completely metrizable space contains Cantor spaces as subspaces. This includes most of the common spaces in real analysis. A topological characterization of Cantor spaces is given by Brouwer's theorem: The topological property of having a base consisting of clopen sets is sometimes known as "zero-dimensionality". Brouwer's theorem can be restated as: This theorem is also equivalent (via Stone's representation theorem for Boolean algebras) to the fact that any two countable atomless Boolean algebras are isomorphic. As can be expected from Brouwer's theorem, Cantor spaces appear in several forms. But many properties of Cantor spaces can be established using 2ω, because its construction as a product makes it amenable to analysis. Cantor spaces have the following properties: The cardinality of any Cantor space is , that is, the cardinality of the continuum.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (2)
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
MATH-205: Analysis IV - Lebesgue measure, Fourier analysis
Learn the basis of Lebesgue integration and Fourier analysis
Concepts associés (12)
Espace polonais
En mathématiques, un espace métrisable à base dénombrable (ou séparable, cela revient au même pour un espace métrisable) est un espace polonais si sa topologie peut être définie par une distance qui en fait un espace complet. Tout espace compact métrisable, tout sous-espace fermé ou ouvert d'un espace polonais, tout produit dénombrable d'espaces polonais, tout espace de Banach séparable est un espace polonais. Cette terminologie a été introduite par le groupe Bourbaki, dans le volume sur la topologie générale de ses Éléments de mathématique.
Théorie descriptive des ensembles
La théorie descriptive des ensembles est une branche des mathématiques s'intéressant aux ensembles « définissables ». Son principal but est de classifier ces ensembles par complexité. Elle a de nombreux liens avec la théorie des ensembles et a des applications dans de nombreux domaines. Historiquement, les premières questions de la théorie descriptive des ensembles sont apparues à la suite de la découverte d'une erreur par Mikhaïl Souslin en dans une démonstration de Lebesgue.
Point isolé
En topologie, un point x d'un espace topologique E est dit isolé si le singleton {x} est un ouvert. Formulations équivalentes : {x} est un voisinage de x ; x n'est pas adhérent à E{x} (x n'est pas un « point d'accumulation »). En particulier, si E est un espace métrique (par exemple une partie d'un espace euclidien), x est un point isolé de E s'il existe une boule ouverte centrée en x qui ne contient pas d'autre point de E. Un espace topologique dans lequel tout point est isolé est dit discret.
Afficher plus