Monôme (mathématiques)En mathématiques, le terme de monôme désigne une expression algébrique ne comportant qu'un seul terme (binômes : deux termes, trinômes : trois termes...). Construction de l'anneau des polynômes En algèbre, un monôme est un polynôme dont un seul coefficient est non nul. Autrement dit, c'est un polynôme particulier qui s'exprime sous la forme d'un produit d'indéterminées (notées X, Y...) affecté d'un coefficient. Exemples sont des monômes en une indéterminée. est un monôme de degré , en deux indéterminées.
SageMathSageMath (anciennement Sage) est un logiciel libre généraliste de calcul mathématique. Le projet SageMath vise à « développer une alternative open source viable » aux systèmes de calcul formel Magma, Maple, et Mathematica ainsi qu'au logiciel de calcul numérique MATLAB. SageMath dispose de fonctionnalités avancées dans des domaines tels que l'algèbre linéaire, l'algèbre commutative, la théorie des nombres ou encore la combinatoire algébrique.
Algorithme de BuchbergerL'algorithme de Buchberger est un algorithme permettant de calculer une base de Gröbner pour un idéal polynomial à partir d'un ensemble générateur de l'idéal et d'un ordre sur les monômes. Il a été publié par le mathématicien autrichien Bruno Buchberger en 1976. En pseudo-code, il peut être décrit comme suit : Entrées : un système de polynômes ; un ordre monomial Sortie : une base de Gröbner de Répéter Pour chaque paire dans : reste de par Si est différent de 0 alors Jusqu'à ce que Renvoyer Le polynôme dans l'algorithme est appelé -polynôme de et , parfois noté .
Ordre monomialEn mathématiques, un ordre monomial est un ordre total sur l'ensemble des monômes d'un anneau de polynômes donné, compatible avec la multiplication, c'est-à-dire : Pour tout monôme , si deux monômes et satisfont selon l'ordre monomial, alors . Les ordres monomiaux sont le plus souvent utilisés pour le calcul des bases de Gröbner et la division multivariée. En particulier, la propriété dêtre une base de Gröbner est toujours relative à un ordre monomial spécifique.
Algèbre commutativevignette|Propriété universelle du produit tensoriel de deux anneaux commutatifs En algèbre générale, l’algèbre commutative est la branche des mathématiques qui étudie les anneaux commutatifs, leurs idéaux, les modules et les algèbres. Elle est fondamentale pour la géométrie algébrique et pour la théorie algébrique des nombres. David Hilbert est considéré comme le véritable fondateur de cette discipline appelée initialement la « théorie des idéaux ».
MapleMaple est un logiciel propriétaire de calcul formel développé depuis les années 1980 et aujourd'hui édité par la société canadienne Maplesoft. La dernière version est la version 2022. Les objets de base du calcul sont les expressions mathématiques, représentées sous forme de graphes orientés acycliques. Maple fournit un langage de programmation spécifique, inspiré d'Algol, qui est à la fois le langage d'utilisation interactive et celui dans lequel est écrite la plus grande partie de la bibliothèque mathématique du logiciel.
Théorème de la base de HilbertIn mathematics, specifically commutative algebra, Hilbert's basis theorem says that a polynomial ring over a Noetherian ring is Noetherian. If is a ring, let denote the ring of polynomials in the indeterminate over . Hilbert proved that if is "not too large", in the sense that if is Noetherian, the same must be true for . Formally, Hilbert's Basis Theorem. If is a Noetherian ring, then is a Noetherian ring. Corollary. If is a Noetherian ring, then is a Noetherian ring.
HypersurfaceEn géométrie, une hypersurface est une généralisation du concept d'hyperplan, de courbe plane et de surface. Une hypersurface est une variété de dimension N - 1, qui est intégrée dans un espace de dimension N, généralement un espace euclidien ou un espace affine. Dans une espace de dimension 3, une hypersurface est une surface Dans une espace de dimension 2, une hypersurface est une ligne Une hypersurface est souvent définie par une seule équation du type f(x1,x2,...xN)=0.
Algèbre graduéevignette|Un organigramme de diverses structures algébriques et leurs relations les unes avec les autres. En mathématiques, en algèbre linéaire, on appelle algèbre graduée une algèbre dotée d'une structure supplémentaire, appelée graduation. Soit A une algèbre sur un corps (ou plus généralement sur un anneau) K. Une graduation sur A est la donnée d’une famille de sous-espaces vectoriels de A vérifiant : c'est-à-dire que . L’algèbre A est alors dite graduée (parfois N-graduée, comme cas particulier de la notion d'algèbre M-graduée pour un monoïde M).
Décomposition primaireLa décomposition primaire est une généralisation de la décomposition d'un nombre entier en facteurs premiers. Cette dernière décomposition, connue depuis Gauss (1832) sous le nom de théorème fondamental de l'arithmétiqueGauss 1832., s'étend naturellement au cas d'un élément d'un anneau principal. Une décomposition plus générale est celle d'un idéal d'un anneau de Dedekind en produit d'idéaux premiers; elle a été obtenue en 1847 par Kummer (dans le formalisme encore peu maniable des « nombres idéaux ») à l'occasion de ses recherches sur le dernier théorème de FermatKummer 1847.