Moyal bracketIn physics, the Moyal bracket is the suitably normalized antisymmetrization of the phase-space star product. The Moyal bracket was developed in about 1940 by José Enrique Moyal, but Moyal only succeeded in publishing his work in 1949 after a lengthy dispute with Paul Dirac. In the meantime this idea was independently introduced in 1946 by Hip Groenewold. The Moyal bracket is a way of describing the commutator of observables in the phase space formulation of quantum mechanics when these observables are described as functions on phase space.
État quantiqueL'état d'un système physique décrit tous les aspects de ce système, dans le but de prévoir les résultats des expériences que l'on peut réaliser. Le fait que la mécanique quantique soit non déterministe entraîne une différence fondamentale par rapport à la description faite en mécanique classique : alors qu'en physique classique, l'état du système détermine de manière absolue les résultats de mesure des grandeurs physiques, une telle chose est impossible en physique quantique et la connaissance de l'état permet seulement de prévoir, de façon toutefois parfaitement reproductible, les probabilités respectives des différents résultats qui peuvent être obtenus à la suite de la réduction du paquet d'onde lors de la mesure d'un système quantique.
Paquet d'ondeEn physique, un paquet d'onde, ou train d'onde, est une enveloppe ou un paquet contenant un nombre arbitraire d'ondes élémentaires. Il existe aussi des demi paquets d'onde, qui sont des paquets d'onde scindés en quadrature de phase. En mécanique quantique, le paquet d'onde possède une signification particulière : il est interprété comme étant une onde de probabilité qui décrit la probabilité pour une particule (ou des particules) dans un état donné d'avoir une position et une quantité de mouvement données.
Limite classiqueLa limite classique ou limite de correspondance est la capacité d'une théorie physique à retrouver pour certaines valeurs de ses paramètres les principes et résultats de la physique classique, c'est-à-dire la physique élaborée jusqu'à la fin du . La limite classique est utilisée avec des théories physiques qui prédisent un comportement non classique ; l'exemple le plus connu est la mécanique quantique, dont les grandeurs caractéristiques font toujours intervenir la constante de Planck ; sa limite classique est donc le plus souvent associée à la limite .
Squeezed coherent stateIn physics, a squeezed coherent state is a quantum state that is usually described by two non-commuting observables having continuous spectra of eigenvalues. Examples are position and momentum of a particle, and the (dimension-less) electric field in the amplitude (phase 0) and in the mode (phase 90°) of a light wave (the wave's quadratures). The product of the standard deviations of two such operators obeys the uncertainty principle: and , respectively.
Principe de correspondanceEn physique, le principe de correspondance, proposé la première fois par Niels Bohr en 1923, établit que le comportement quantique d'un système peut se réduire à un comportement de physique classique, quand les nombres quantiques mis en jeu sont très grands, ou quand la quantité d'action représentée par la constante de Planck peut être négligée devant l'action mise en œuvre dans le système. Les lois de la mécanique quantique sont extrêmement efficaces dans la description des objets microscopiques, comme les atomes ou les particules.
Représentation de SchrödingerEn mécanique quantique, la représentation de Schrödinger est une des trois formulations et modes de traitement des problèmes dépendant du temps dans le cadre de la mécanique quantique classique. Dans cette représentation, l'état d'un système évolue avec le temps. Le principe de superposition quantique stipule qu'une fonction d'état est en général une combinaison linéaire d'états propres.
Relation de commutation canoniqueEn mécanique quantique, la relation de commutation canonique est la relation fondamentale entre les grandeurs conjuguées canoniques (grandeurs qui sont liées par définition telles que l'une est la transformée de Fourier d'une autre). Par exemple : entre l'opérateur de position x et l'opérateur d'impulsion px dans la direction x d'une particule ponctuelle dans une dimension, où est le commutateur de x et px , i est l'unité imaginaire, et est la constante de Planck réduite .
Représentation de HeisenbergEn mécanique quantique, la représentation de Heisenberg est une des trois formulations et modes de traitement des problèmes dépendant du temps dans le cadre de la mécanique quantique classique. Dans cette représentation, les opérateurs du système évoluent avec le temps alors que le vecteur d'état quantique ne dépend pas du temps. Remarque : La représentation de Heisenberg ne doit pas être confondue avec la « mécanique des matrices », quelquefois appelée « mécanique quantique de Heisenberg ».
Matrice densitéEn physique quantique, la matrice densité, souvent représentée par , est un objet mathématique introduit par le mathématicien et physicien John von Neumann permettant de décrire l'état d'un système physique. Elle constitue une généralisation de la formulation d'un état physique à l'aide d'un ket , en permettant de décrire des états plus généraux, appelés mélanges statistiques, que la précédente formulation ne permettait pas de décrire.