En théorie des corps un élément d'une extension L d'un corps commutatif K est dit algébrique sur K quand il existe un polynôme non nul à coefficients dans K s'annulant sur cet élément. Un élément qui n'est pas algébrique sur K est dit transcendant sur K. Il s'agit d'une généralisation des notions de nombre algébrique et nombre transcendant : un nombre algébrique est un nombre réel ou complexe, un élément de l'extension C du corps Q des rationnels, qui est algébrique sur Q. Ainsi est un réel algébrique sur Q, et le nombre e ou le nombre π sont des réels transcendants sur Q. S'il existe des complexes transcendants sur Q, tout nombre complexe a+bi est algébrique sur le corps R des réels, comme racine de (X - a)2+b2. Tout élément a de K est évidemment algébrique sur K, comme racine du polynôme X - a. Plus généralement Tout élément a d'une extension finie de K est algébrique sur K. En effet une extension finie de K est un espace vectoriel de dimension finie sur K. On a donc une relation de dépendance linéaire sur les puissances successives de a qui fournit un polynôme qui s'annule sur a. On peut caractériser la notion d'élément algébrique ou transcendant en utilisant K[a], le plus petit sous-anneau de L contenant K et a. Les éléments de l'anneau K[a] sont les éléments de L qui s'expriment comme des polynômes en a, c'est-à-dire que K[a] est l'image de l'anneau des polynômes K[X] par le morphisme d'anneaux φ qui à X associe a. Ce morphisme est non injectif si et seulement si un polynôme non nul s'annule sur a. Par ailleurs si a est racine d'un polynôme de K[X], a est racine d'un polynôme irréductible (facteur du précédent) dont K[a] est le corps de rupture. En résumé : l'élément a est transcendant sur K si et seulement si K[a] et K[X] sont isomorphes (l'isomorphisme étant donné par φ) ; l'élément a est algébrique sur K si et seulement si K[a] est un corps. Soit K(a) le plus petit sous-corps de L contenant a (les éléments de K(a) sont les éléments de L qui s'expriment comme des fractions rationnelles en a).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.