En théorie des corps un élément d'une extension L d'un corps commutatif K est dit algébrique sur K quand il existe un polynôme non nul à coefficients dans K s'annulant sur cet élément. Un élément qui n'est pas algébrique sur K est dit transcendant sur K.
Il s'agit d'une généralisation des notions de nombre algébrique et nombre transcendant : un nombre algébrique est un nombre réel ou complexe, un élément de l'extension C du corps Q des rationnels, qui est algébrique sur Q. Ainsi est un réel algébrique sur Q, et le nombre e ou le nombre π sont des réels transcendants sur Q. S'il existe des complexes transcendants sur Q, tout nombre complexe a+bi est algébrique sur le corps R des réels, comme racine de (X - a)2+b2.
Tout élément a de K est évidemment algébrique sur K, comme racine du polynôme X - a. Plus généralement
Tout élément a d'une extension finie de K est algébrique sur K.
En effet une extension finie de K est un espace vectoriel de dimension finie sur K. On a donc une relation de dépendance linéaire sur les puissances successives de a qui fournit un polynôme qui s'annule sur a.
On peut caractériser la notion d'élément algébrique ou transcendant en utilisant K[a], le plus petit sous-anneau de L contenant K et a. Les éléments de l'anneau K[a] sont les éléments de L qui s'expriment comme des polynômes en a, c'est-à-dire que K[a] est l'image de l'anneau des polynômes K[X] par le morphisme d'anneaux φ qui à X associe a. Ce morphisme est non injectif si et seulement si un polynôme non nul s'annule sur a. Par ailleurs si a est racine d'un polynôme de K[X], a est racine d'un polynôme irréductible (facteur du précédent) dont K[a] est le corps de rupture. En résumé :
l'élément a est transcendant sur K si et seulement si K[a] et K[X] sont isomorphes (l'isomorphisme étant donné par φ) ;
l'élément a est algébrique sur K si et seulement si K[a] est un corps.
Soit K(a) le plus petit sous-corps de L contenant a (les éléments de K(a) sont les éléments de L qui s'expriment comme des fractions rationnelles en a).
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En algèbre, le terme de polynôme formel, ou simplement polynôme, est le nom générique donné aux éléments d'une structure construite à partir d'un ensemble de nombres. On considère un ensemble A de nombres, qui peut être celui des entiers ou des réels, et on lui adjoint un élément X, appelé indéterminée. La structure est constituée par les nombres, le polynôme X, les puissances de X multipliées par un nombre, aussi appelés monômes (de la forme aX), ainsi que les sommes de monômes. La structure est généralement notée A[X].
En mathématiques, une fonction rationnelle est une fonction définie par une fraction rationnelle, c'est-à-dire une dont le numérateur et le dénominateur sont des polynômes. En pratique, l'ensemble de définition est généralement (ensemble des réels) ou (ensemble des complexes). Si P et Q sont deux fonctions polynomiales et si Q n'est pas une fonction nulle, la fonction est définie pour tout x tel que Q(x) ≠ 0 par Une fonction qui n'est pas rationnelle est dite irrationnelle.
thumb|Carl Friedrich Gauss utilise des polynômes minimaux appelés cyclotomiques pour déterminer les polygones constructibles à la règle et au compas. En théorie des corps, le polynôme minimal sur un corps commutatif K d'un élément algébrique d'une extension de K, est le polynôme unitaire de degré minimal parmi les polynômes à coefficients dans le corps de base K qui annulent l'élément. Il divise tous ces polynômes. C'est toujours un polynôme irréductible.
This paper concerns the maximum-likelihood channel estimation for MIMO systems with orthogonal space-time block codes when the finite alphabet constraint of the signal constellation is relaxed. We study the channel coefficients estimation subspace generate ...
Let P be a partially ordered set. If the Boolean lattice (2[n],⊂) can be partitioned into copies of P for some positive integer n, then P must satisfy the following two trivial conditions: (1) the size of P is a power of 2, (2) P has a unique maximal and m ...
We exhibit central simple algebras over the function field of a diagonal quartic surface over the complex numbers that represent the 2-torsion part of its Brauer group. We investigate whether the 2-primary part of the Brauer group of a diagonal quartic sur ...