Transformation de LaplaceEn mathématiques, la transformation de Laplace est une transformation intégrale qui à une fonction f — définie sur les réels positifs et à valeurs réelles — associe une nouvelle fonction F — définie sur les complexes et à valeurs complexes — dite transformée de Laplace de f. L'intérêt de la transformation de Laplace vient de la conjonction des deux faits suivants : De nombreuses opérations courantes sur la fonction originale f se traduisent par une opération algébrique sur la transformée F.
Asymptotic analysisIn mathematical analysis, asymptotic analysis, also known as asymptotics, is a method of describing limiting behavior. As an illustration, suppose that we are interested in the properties of a function f (n) as n becomes very large. If f(n) = n2 + 3n, then as n becomes very large, the term 3n becomes insignificant compared to n2. The function f(n) is said to be "asymptotically equivalent to n2, as n → ∞". This is often written symbolically as f (n) ~ n2, which is read as "f(n) is asymptotic to n2".
Differential algebraIn mathematics, differential algebra is, broadly speaking, the area of mathematics consisting in the study of differential equations and differential operators as algebraic objects in view of deriving properties of differential equations and operators without computing the solutions, similarly as polynomial algebras are used for the study of algebraic varieties, which are solution sets of systems of polynomial equations. Weyl algebras and Lie algebras may be considered as belonging to differential algebra.
Algebraic fractionIn algebra, an algebraic fraction is a fraction whose numerator and denominator are algebraic expressions. Two examples of algebraic fractions are and . Algebraic fractions are subject to the same laws as arithmetic fractions. A rational fraction is an algebraic fraction whose numerator and denominator are both polynomials. Thus is a rational fraction, but not because the numerator contains a square root function. In the algebraic fraction , the dividend a is called the numerator and the divisor b is called the denominator.
Projectively extended real lineIn real analysis, the projectively extended real line (also called the one-point compactification of the real line), is the extension of the set of the real numbers, , by a point denoted ∞. It is thus the set with the standard arithmetic operations extended where possible, and is sometimes denoted by or The added point is called the point at infinity, because it is considered as a neighbour of both ends of the real line. More precisely, the point at infinity is the limit of every sequence of real numbers whose absolute values are increasing and unbounded.
Dynamique holomorpheLa dynamique holomorphe est un domaine de l'analyse complexe et des systèmes dynamiques s'intéressant principalement à l'étude de l'itération des applications holomorphes. La dynamique holomorphe provient initialement de l'étude de la méthode de Newton faite par le mathématicien allemand Ernst Schröder dans les années 1870. Cette méthode, qui revient à itérer une certaine fraction rationnelle particulière, est ensuite généralisée à l'itération de fractions rationnelles quelconques.