In finance, a coupon is the interest payment received by a bondholder from the date of issuance until the date of maturity of a bond.
Coupons are normally described in terms of the "coupon rate", which is calculated by adding the sum of coupons paid per year and dividing it by the bond's face value. For example, if a bond has a face value of 1,000andacouponrateof550 per year. Typically, this will consist of two semi-annual payments of $25 each.
The origin of the term "coupon" is that bonds were historically issued in the form of bearer certificates. Physical possession of the certificate was (deemed) proof of ownership. Several coupons, one for each scheduled interest payment, were printed on the certificate. At the date the coupon was due, the owner would detach the coupon and present it for payment (an act called "clipping the coupon").
The certificate often also contained a document called a talon, which (when the original block of coupons had been used up) could be detached and presented in exchange for a block of further coupons.
Not all bonds have coupons. Zero-coupon bonds are those that pay no coupons and thus have a coupon rate of 0%. Such bonds make only one payment: the payment of the face value on the maturity date. Normally, to compensate the bondholder for the time value of money, the price of a zero-coupon bond will always be less than its face value on any date of purchase before the maturity date. During the European sovereign-debt crisis, some zero-coupon sovereign bonds traded above their face value as investors were willing to pay a premium for the perceived safe-haven status these investments hold. The difference between the price and the face value provides the bondholder with the positive return that makes purchasing the bond worthwhile.
Between a bond's issue date and its maturity date (also called its redemption date), the bond's price is determined by taking into account several factors, including:
The face value;
The maturity date;
The coupon rate, frequency of coupon payments, and day count convention;
The creditworthiness of the issuer; and
The yield on comparable investment options.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The course provides a market-oriented framework for analyzing the major financial decisions made by firms. It provides an introduction to valuation techniques, investment decisions, asset valuation, f
The course provides a market-oriented framework for analyzing the major financial decisions made by firms. It provides an introduction to valuation techniques, investment decisions, asset valuation, f
The objective of this course is to provide a detailed coverage of the standard models for the valuation and hedging of derivatives products such as European options, American options, forward contract
Une obligation à taux fixe est la plus classique des obligations. Elle verse un intérêt ou coupon définitivement fixé lors de son émission selon une périodicité prédéfinie jusqu'à son échéance. Les caractéristiques à l'émission sont les suivantes : La valeur nominale : il s'agit de la valeur de la part de l'emprunt. Le taux facial : ce taux fixe permet de déterminer le montant du coupon. Le montant du coupon : l'intérêt versé est égal au produit de la valeur nominale et du taux facial.
Le taux actuariel d'un ensemble de flux financiers, comme un emprunt bancaire ou obligataire ou encore d'un placement, est son taux calculé selon le modèle actuariel, lequel est une simplification du processus d'actualisation. calculant la valeur actualisée de chaque flux futur , positif ou négatif, de remboursement, de paiement d'intérêt ou autre où : est le montant du flux à l'époque où il sera disponible est le taux d'actualisation applicable de la date d'actualisation à la date du flux est le temps, exprimé en nombre d'années, de la date d'actualisation à la date du flux .
Une courbe des taux (en anglais : Yield Curve) est, en finance, la représentation graphique de la fonction mathématique du taux d'intérêt effectif à un instant donné d'un zéro-coupon en fonction de sa maturité d'une même classe d'instruments fongibles exprimés dans une même devise, comme les swaps contre IBOR. Par extension, on l'emploie pour des instruments non fongibles mais néanmoins fortement comparables entre eux, comme les emprunts à taux fixe d'un même État.
In this thesis we present three closed form approximation methods for portfolio valuation and risk management.The first chapter is titled ``Kernel methods for portfolio valuation and risk management'', and is a joint work with Damir Filipovi'c (SFI and EP ...
Because most mortgages in the United States are securitized in agency mortgage-backed securities (MBS), yield spreads on MBS are a key determinant of homeowners’ funding costs. We study variation in MBS spreads in the time series and across securities and ...
A yield curve is a line plotting bond yields (i.e. interest rates) as a function of their maturity date (their "expiration date''). When on a national scale, the yield curve represents the underlying interest rate structure of a country's economy. It is fu ...