Géométrie différentielle des surfacesEn mathématiques, la géométrie différentielle des surfaces est la branche de la géométrie différentielle qui traite des surfaces (les objets géométriques de l'espace usuel E3, ou leur généralisation que sont les variétés de dimension 2), munies éventuellement de structures supplémentaires, le plus souvent une métrique riemannienne. Outre les surfaces classiques de la géométrie euclidienne (sphères, cônes, cylindres, etc.
Distance (géographie)La distance en géographie peut être entendue comme la longueur de l'intervalle ou du trajet séparant deux ou plusieurs lieux. La distance est la marque d'une séparation, son franchissement nécessite obligatoirement une dépense énergétique. Les formules contenues dans cet article permettent de calculer les distances entre des points qui sont définis par leurs coordonnées géographiques à l'aide de la notion de latitude et de longitude. Calculer la distance entre deux coordonnées géographiques nécessite un certain degré d'abstraction.
LoxodromieUne loxodromie (du grec lox(o)- et -dromie course (δρόμος) oblique (λοξός), en anglais rhumb line), est une courbe qui coupe les méridiens d'une sphère sous un angle constant. C'est la trajectoire suivie par un navire qui suit un cap constant. Une route loxodromique est représentée sur une carte marine ou aéronautique en projection de Mercator par une ligne droite, mais elle ne représente pas la distance la plus courte entre deux points. En effet, la route la plus courte, appelée route orthodromique ou orthodromie, est un arc de grand cercle de la sphère.
Great-circle navigationGreat-circle navigation or orthodromic navigation (related to orthodromic course; ) is the practice of navigating a vessel (a ship or aircraft) along a great circle. Such routes yield the shortest distance between two points on the globe. The great circle path may be found using spherical trigonometry; this is the spherical version of the inverse geodetic problem. If a navigator begins at P1 = (φ1,λ1) and plans to travel the great circle to a point at point P2 = (φ2,λ2) (see Fig.
Equal-area projectionIn cartography, an equivalent, authalic, or equal-area projection is a map projection that preserves relative area measure between any and all map regions. Equivalent projections are widely used for thematic maps showing scenario distribution such as population, farmland distribution, forested areas, and so forth, because an equal-area map does not change apparent density of the phenomenon being mapped. By Gauss's Theorema Egregium, an equal-area projection cannot be conformal.
Distance du grand cercleLa distance du grand cercle, également appelée distance orthodromique, est la plus courte distance entre deux points sur une sphère. La surface de la Terre étant approximativement sphérique, la distance du grand cercle est généralement employée pour mesurer la distance entre deux points à sa surface, à partir de leur longitude et leur latitude. R est le rayon de la sphère (le rayon de la Terre vaut environ ). δ est la latitude (en radians). λ est la longitude (en radians). Sur une sphère de rayon R, la dist
Formules de VincentyVincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a). They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such as great-circle distance. The first (direct) method computes the location of a point that is a given distance and azimuth (direction) from another point.
Projection cartographiqueLa projection cartographique est un ensemble de techniques géodésiques permettant de représenter une surface non plane (surface de la Terre, d'un autre corps céleste, du ciel, ...) dans son ensemble ou en partie sur la surface plane d'une carte. L'impossibilité de projeter le globe terrestre sur une surface plane sans distorsion (Theorema egregium) explique que diverses projections aient été inventées, chacune ayant ses avantages. Le choix d'une projection et le passage d'une projection à une autre comptent parmi les difficultés mathématiques que les cartographes ont dû affronter.
Arc de méridienEn géodésie, la mesure d'un arc de méridien est la détermination la plus exacte possible de la distance entre deux points situés sur un même méridien, soit à la même longitude. Deux ou plusieurs déterminations de ce type dans des endroits différents précisent ensuite la forme de l'ellipsoïde de référence qui donne la meilleure approximation de la forme du géoïde. Ce processus est appelé « déterminer la figure de la Terre ». Les premières mesures de la taille d'une Terre sphérique eurent besoin d'un seul arc.
Rayon de la Terrevignette|upright=0.7|Rayon de la Terre (en jaune) en fonction de la latitude (φ) comparé à la distance perpendiculaire entre l'axe de rotation de la Terre et la surface (en bleu). Le rayon de la Terre ( ou ) est la distance entre le centre de la Terre et sa surface, d'une valeur d'environ selon divers modèles sphériques. Cette unité de longueur est utilisée dans des domaines tels l'astronomie et la géologie. La Terre n'est pas parfaitement sphérique et les distances entre sa surface et son centre varient de (fond de l'océan Arctique) à (sommet du Chimborazo).