Empilement compactUn empilement compact d'une collection d'objets est un agencement de ces objets de telle sorte qu'ils occupent le moins d'espace possible (donc qu'ils laissent le moins de vide possible). Le problème peut se poser dans un espace (euclidien ou non) de dimension n quelconque, les objets étant eux-mêmes de dimension n. Les applications pratiques sont concernées par les cas (plan et autres surfaces) et (espace ordinaire).
Packing problemsPacking problems are a class of optimization problems in mathematics that involve attempting to pack objects together into containers. The goal is to either pack a single container as densely as possible or pack all objects using as few containers as possible. Many of these problems can be related to real-life packaging, storage and transportation issues. Each packing problem has a dual covering problem, which asks how many of the same objects are required to completely cover every region of the container, where objects are allowed to overlap.
László Fejes TóthLászló Fejes Tóth (-) est un mathématicien hongrois spécialiste en géométrie. Il a démontré le théorème du nid d'abeille sous l'hypothèse de convexité des tuiles du pavage. Persuadé que le théorème resterait vrai sans cette hypothèse il ne parvint néanmoins pas à le démontrer, affirmant que cela soulèverait des . Il est également connu pour son travail sur les empilements de sphères ; László Fejes Tóth a démontré en 1953 que la conjecture de Kepler pouvait être réduite à un problème à un nombre fini de paramètres.
Close-packing of equal spheresIn geometry, close-packing of equal spheres is a dense arrangement of congruent spheres in an infinite, regular arrangement (or lattice). Carl Friedrich Gauss proved that the highest average density – that is, the greatest fraction of space occupied by spheres – that can be achieved by a lattice packing is The same packing density can also be achieved by alternate stackings of the same close-packed planes of spheres, including structures that are aperiodic in the stacking direction.