S'insère dans l'évaluation du modèle, couvrant la théorie, l'erreur de formation, l'erreur de prédiction, les méthodes de rééchantillonnage et les critères d'information.
Couvre les variables aléatoires gaussiennes, les transformations d'affines et les systèmes linéaires entraînés par le bruit gaussien dans le contrôle multivariable.
Explore la covariance, la dépendance statistique, la relation éducation-fertilité, les tests d'hypothèse et les statistiques de comparaison pour des résultats continus.
Explore les techniques de réduction de la variance telles que les variables antithétiques et l'échantillonnage d'importance dans l'estimation de Monte Carlo.