Explore les fondamentaux de régression logistique, y compris les fonctions de coût, la régularisation et les limites de classification, avec des exemples pratiques utilisant scikit-learn.
Explore l'interprétation des réponses binaires, les fonctions de liaison, la régression logistique et la sélection des modèles à l'aide de déviances et de critères d'information.
Explore des exemples spéciaux de modèles linéaires généralisés, couvrant la régression logistique, les modèles de données de comptage, les problèmes de séparation et les relations non paramétriques.
Introduit les bases de l'apprentissage supervisé, en mettant l'accent sur la régression logistique, la classification linéaire et la maximisation de la probabilité.
Introduit les bases du NLP moderne, couvrant l'intégration de mots, les modèles neuraux, et les tâches comme l'étiquetage de séquence et la génération de texte.