Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'estimation de la probabilité maximale, la régression logistique, l'estimation de la covariance et les machines vectorielles de soutien pour les problèmes de classification.
Explore la régression logistique, les fonctions de coût, la descente en gradient et la modélisation de probabilité à l'aide de la fonction sigmoïde logistique.
Explore les modèles génératifs, la régression logistique et la distribution gaussienne pour approximer les probabilités postérieures et optimiser les performances du modèle.
Explique la machine vectorielle de soutien et la régression logistique pour les tâches de classification, en mettant l'accent sur la maximisation de la marge et la minimisation des risques.
Explore l'optimisation convexe, les fonctions convexes et leurs propriétés, y compris la convexité stricte et la convexité forte, ainsi que différents types de fonctions convexes comme les fonctions et les normes affines linéaires.