Formule de haversineLa formule de haversine permet de déterminer la distance du grand cercle entre deux points d'une sphère, à partir de leurs longitudes et latitudes. Largement utilisée dans la navigation, c'est un cas particulier d'une formule plus générale de la trigonométrie sphérique, la loi des haversines, qui associe les côtés et les angles des triangles sphériques. La table de haversines remonte au début du , avec une publication par James Andrew en 1805, même si Florian Cajori cite son utilisation par José Mendoza y Ríos en 1801.
LongitudeLa longitude d'un point sur Terre (ou sur une autre sphère) est une coordonnée géographique représentée par une valeur angulaire, expression du positionnement est-ouest du point. Une longitude se mesure par rapport à une référence arbitraire qui, sur Terre, est généralement le méridien de Greenwich. Les points de même longitude appartiennent à une ligne épousant la courbure terrestre, coupant l'équateur à angle droit et reliant le pôle Nord au pôle Sud. Cette ligne est appelée « méridien ».
GéodésiqueEn géométrie, une géodésique est la généralisation d'une ligne droite du plan ou de l'espace euclidien, au cadre des surfaces, ou plus généralement des variétés ou des espaces métriques. Elles sont étroitement liées à la notion de plus court chemin relativement à un calcul de distance sur un tel espace. Ainsi, le plus court chemin (ou les plus courts chemins, s'il en existe plusieurs), entre deux points est toujours une géodésique. Mais plus précisément, on appelle géodésique une courbe qui, à l'échelle locale, relie les points en minimisant la distance.