Concept

Saccheri quadrilateral

Concepts associés (6)
Géométrie
La géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
Axiome des parallèles
L’axiome d'Euclide, dit également cinquième postulat d’Euclide, est dû au savant grec Euclide (). C'est un axiome relatif à la géométrie du plan. La nécessité de cet axiome a constitué la question la plus lancinante de toute l'histoire de la géométrie, et il a fallu plus de deux millénaires de débats ininterrompus pour que la communauté scientifique reconnaisse l'impossibilité de le réduire au statut de simple théorème. vignette|Illustration de l'axiome d'Euclide : La droite S détermine les angles internes α et β avec les droites g et h.
Géométrie sphérique
La géométrie sphérique est une branche de la géométrie qui s'intéresse à la surface bidimensionnelle d'une sphère. C'est un exemple de géométrie non euclidienne. En géométrie plane, les concepts de base sont les points et les droites. Sur une surface plus générale, les points gardent leur sens usuel ; par contre, les équivalents des droites sont définies comme les lignes matérialisant le chemin le plus court entre les points, qu'on appelle des géodésiques.
Géométrie elliptique
Une géométrie elliptique est une géométrie non euclidienne. Les axiomes sont identiques à ceux de la géométrie euclidienne à l'exception de l'axiome des parallèles : en géométrie elliptique, étant donné une droite et un point extérieur à cette droite, il n'existe aucune droite parallèle à cette droite passant par ce point. Il est équivalent de dire que la somme des angles d'un triangle est toujours supérieure à .
Géométrie hyperbolique
En mathématiques, la géométrie hyperbolique (nommée auparavant géométrie de Lobatchevski, lequel est le premier à en avoir publié une étude approfondie) est une géométrie non euclidienne vérifiant les quatre premiers postulats d’Euclide, mais pour laquelle le cinquième postulat, qui équivaut à affirmer que par un point extérieur à une droite passe une et une seule droite qui lui est parallèle, est remplacé par le postulat selon lequel « par un point extérieur à une droite passent plusieurs droites parallèle
Géométrie non euclidienne
La géométrie non euclidienne (GNE) est, en mathématiques, une théorie géométrique ayant recours aux axiomes et postulats posés par Euclide dans les Éléments, sauf le postulat des parallèles. Les différentes géométries non euclidiennes sont issues initialement de la volonté de démontrer la proposition du cinquième postulat, qui apparaissait peu satisfaisant en tant que postulat car trop complexe et peut-être redondant avec les autres postulats).

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.