Réaction chimiqueUne réaction chimique est une transformation de la matière au cours de laquelle les espèces chimiques qui constituent la matière sont modifiées. Les espèces qui sont consommées sont appelées réactifs ; les espèces formées au cours de la réaction sont appelées produits. Depuis les travaux de Lavoisier (1777), les scientifiques savent que la réaction chimique se fait sans variation mesurable de la masse : , qui traduit la conservation de la masse. thumb|La réaction aluminothermique est une oxydo-réduction spectaculaire.
Surface d'énergie potentielleUne surface d'énergie potentielle est généralement utilisée dans l'approximation adiabatique (ou approximation de Born-Oppenheimer) en mécanique quantique et mécanique statistique afin de modéliser les réactions chimiques et les interactions dans des systèmes chimiques et physiques simples. Le nom de « (hyper)surface » provient du fait que l'énergie totale d'un système atomique peut être représentée comme une courbe ou une surface, pour laquelle les positions atomiques sont des variables.
Pre-exponential factorIn chemical kinetics, the pre-exponential factor or A factor is the pre-exponential constant in the Arrhenius equation (equation shown below), an empirical relationship between temperature and rate coefficient. It is usually designated by A when determined from experiment, while Z is usually left for collision frequency. The pre-exponential factor can be thought of as a measure of the frequency of properly oriented collisions. It is typically determined experimentally by measuring the rate constant at a particular temperature and fitting the data to the Arrhenius equation.
Équation d'EyringL'équation d'Eyring, aussi appelée équation d'Eyring-Polanyi en cinétique chimique, relie la vitesse de réaction à la température. Elle a été établie quasi-simultanément en 1935 par Henry Eyring, M.G. Evans et Michael Polanyi. Cette équation découle de la théorie de l'état de transition (ou théorie du complexe activé) et correspond, contrairement à la loi d'Arrhenius, à un modèle théorique basé sur la thermodynamique statistique.
Entropie d'activationDans la cinétique chimique, l'entropie d'activation d'une réaction est l'un des deux paramètres (l'autre étant l'enthalpie d'activation) qui sont normalement déterminés à partir de la variation de la constante de vitesse en fonction de la température, lorsque ces données sont analysées à l'aide de l'équation d'Eyring. L'entropie standard d'activation est désignée par le symbole ΔS‡ et égale la variation d'entropie lorsque les réactifs changent de leur état initial jusqu'à l'état de transition (ou le complexe activé).
Réaction exothermiqueEn thermodynamique, une réaction exothermique (du grec ancien ἔξω, « hors de » et θερμός, « chaud ») est un processus physico-chimique produisant de la chaleur. Dans une réaction chimique exothermique, l'énergie dégagée par la formation des liaisons chimiques dans les produits de réaction est supérieure à l'énergie requise pour briser les liaisons dans les réactifs. Dans le cas contraire, une réaction qui consomme de la chaleur est dite « endothermique ».
Substrat enzymatiqueEn enzymologie, on désigne par substrat enzymatique toute molécule subissant une réaction chimique catalysée par une enzyme (ex : l'amidon est hydrolysé par l'amylase en glucose). Il peut s'agir de molécules complexes, de polymères, de molécules simples (ex. : catalase dismutant du peroxyde d'hydrogène). Par convention : Est appelée substrat la molécule ou famille de molécules subissant spécifiquement la catalyse enzymatique par fixation dans le site actif de l'enzyme (ex.
Approximation des états quasi stationnairesL'approximation des états quasi stationnaires (AEQS) est une hypothèse parfois prise en physique, en chimie et tout particulièrement en cinétique chimique, elle est alors également appelée le principe de Bodenstein. Soit X* un intermédiaire réactionnel (donc très réactif). Selon l'AEQS, sa vitesse de création est à peu près égale à sa vitesse de disparition car il est consommé par la réaction juste après sa création. En considérant que sa concentration reste tellement faible qu'elle est constante, la dérivée de sa concentration est nulle.
Thermodynamic stateIn thermodynamics, a thermodynamic state of a system is its condition at a specific time; that is, fully identified by values of a suitable set of parameters known as state variables, state parameters or thermodynamic variables. Once such a set of values of thermodynamic variables has been specified for a system, the values of all thermodynamic properties of the system are uniquely determined. Usually, by default, a thermodynamic state is taken to be one of thermodynamic equilibrium.
Processus spontanéUn processus spontané est une évolution temporelle d'un système dans laquelle il perd de l'enthalpie libre (souvent sous forme de chaleur) et rejoint un état thermodynamiquement plus stable en parcourant un chemin sur sa surface d'énergie potentielle. La convention de signe des modifications de l'énergie libre suit la convention générale des mesures thermodynamiques, dans lesquelles une libération d'énergie libre depuis le système correspond à une variation négative de l'énergie libre du système, mais une variation positive pour son environnement.