Limite (mathématiques)En analyse mathématique, la notion de limite décrit l’approximation des valeurs d'une suite lorsque l'indice tend vers l’infini, ou d'une fonction lorsque la variable se rapproche d’un point (éventuellement infini) au bord du domaine de définition. Si une telle limite existe dans l’ensemble d’arrivée, on dit que la suite ou la fonction est convergente (au point étudié). Si ce n’est pas le cas, elle est divergente, comme dans le cas de suites et fonctions périodiques non constantes (telle la fonction sinus en +∞).
Infinithumb|∞ : le symbole infini. Le mot « infini » (-e, -s) est un adjectif servant à qualifier quelque chose qui n'a pas de limite en nombre ou en taille. Il vient du latin infīnītus, dérivé de fīnītus « limité » (avec in-, préfixe négatif), issu lui-même du verbe fīnĭo, fīnīre (« délimiter », mais aussi : « préciser », « déterminer », et intransitivement « finir »), et du nom fīnis (souvent au pluriel, fīnes : « bornes, limites d'un champ », « frontières d'un pays ») ; il signifie donc, littéralement « qui est sans borne », mais aussi « indéterminé » et « indéfini ».
Nombre réelEn mathématiques, un nombre réel est un nombre qui peut être représenté par une partie entière et une liste finie ou infinie de décimales. Cette définition s'applique donc aux nombres rationnels, dont les décimales se répètent de façon périodique à partir d'un certain rang, mais aussi à d'autres nombres dits irrationnels, tels que la racine carrée de 2, π et e.
Nombre dualEn mathématiques et en algèbre abstraite, les nombres duaux sont une algèbre associative unitaire commutative à deux dimensions sur les nombres réels, apparaissant à partir des réels par adjonction d'un nouvel élément ε avec la propriété ε = 0 (ε est un élément nilpotent). Ils ont été introduits par William Clifford en 1873. Ils sont notamment utiles pour fournir un outil de dérivation automatique. Ils ont également des applications en physique. Tout nombre dual s'écrit de façon unique sous la forme z = a + bε avec a et b réels.
Nombre surréelvignette|Représentation d'une partie de l'arbre des nombres surréels. En mathématiques, les nombres surréels sont les éléments d'une classe incluant celle des réels et celle des nombres ordinaux transfinis, et sur laquelle a été définie une structure de corps ; ceci signifie en particulier que l'on définit des inverses des nombres ordinaux transfinis ; ces ordinaux et leurs inverses sont respectivement plus grands et plus petits que n'importe quel nombre réel positif. Les surréels ne forment pas un ensemble au sens de la théorie usuelle.