Discute des groupes linéairement réducteurs et de leurs propriétés, en se concentrant sur des représentations complètement réductibles et des modules équivalents.
Explore la théorie des groupes en physique quantique, en mettant l'accent sur les représentations réductibles et irréductibles, les lois de conservation et les propriétés de groupe.
Couvre l'algèbre de Lie, les représentations de groupe, les groupes de symétrie et le lemme de Schur dans le contexte de la symétrie et des opérations de groupe.