Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
La théorie d'Iwasawa peut être vue comme une tentative d'étendre les résultats arithmétiques classiques sur les corps de nombres (extensions finies du corps des rationnels) à des extensions infinies de , par des procédés de passage à la limite des extensions finies vers les extensions infinies. Les objets de base de la théorie d'Iwasawa sont les -extensions ; c'est-à-dire des extensions galoisiennes dont le groupe de Galois est le groupe profini , pour un nombre premier fixé. Par la correspondance de Galois, la donnée d'une -extension est équivalente à celle d'une tour d'extensions telle que chaque est galoisienne sur de groupe de Galois . Pour chaque corps de nombres, une -extension particulière peut-être construite par adjonction de racines -ièmes de l'unité : la -extension cyclotomique. Sous la conjecture de Leopoldt, un corps de nombres admet -extensions linéairement indépendantes, où est le nombre de couples de plongements complexes conjugués du corps considéré ; ce qui peut encore s'énoncer en disant que le compositum de toutes ces extensions a pour groupe de Galois . Le théorème fondateur de la théorie, dû à Iwasawa, porte sur le comportement du groupe des classes le long d'une -extension. Soit un nombre premier, un corps de nombres, et une -extension de . Pour chaque , on s'intéresse au cardinal du -Sylow du groupe des classes de ; notons le . Alors, il existe des entiers , (positifs), (de signe quelconque), tels que pour assez grand, on ait : Notons A(Kn) le p-Sylow du groupe des classes du corps Kn. Par la théorie du corps de classes, il existe une extension Ln de Kn tel que : Ln est la p-extension abélienne non ramifiée maximale de Kn. L'union des corps Ln fournit alors un corps L, qui est la pro-p- extension abélienne non ramifiée maximale de . On considère alors le groupe de Galois : X est la limite projective des groupes , qui apparaissent comme des quotients de X. X en tant que pro-p-groupe abélien a une structure naturelle de -module.