Concept

Théorie d'Iwasawa

Résumé
La théorie d'Iwasawa peut être vue comme une tentative d'étendre les résultats arithmétiques classiques sur les corps de nombres (extensions finies du corps des rationnels) à des extensions infinies de , par des procédés de passage à la limite des extensions finies vers les extensions infinies. Les objets de base de la théorie d'Iwasawa sont les -extensions ; c'est-à-dire des extensions galoisiennes dont le groupe de Galois est le groupe profini , pour un nombre premier fixé. Par la correspondance de Galois, la donnée d'une -extension est équivalente à celle d'une tour d'extensions telle que chaque est galoisienne sur de groupe de Galois . Pour chaque corps de nombres, une -extension particulière peut-être construite par adjonction de racines -ièmes de l'unité : la -extension cyclotomique. Sous la conjecture de Leopoldt, un corps de nombres admet -extensions linéairement indépendantes, où est le nombre de couples de plongements complexes conjugués du corps considéré ; ce qui peut encore s'énoncer en disant que le compositum de toutes ces extensions a pour groupe de Galois . Le théorème fondateur de la théorie, dû à Iwasawa, porte sur le comportement du groupe des classes le long d'une -extension. Soit un nombre premier, un corps de nombres, et une -extension de . Pour chaque , on s'intéresse au cardinal du -Sylow du groupe des classes de ; notons le . Alors, il existe des entiers , (positifs), (de signe quelconque), tels que pour assez grand, on ait : Notons A(Kn) le p-Sylow du groupe des classes du corps Kn. Par la théorie du corps de classes, il existe une extension Ln de Kn tel que : Ln est la p-extension abélienne non ramifiée maximale de Kn. L'union des corps Ln fournit alors un corps L, qui est la pro-p- extension abélienne non ramifiée maximale de . On considère alors le groupe de Galois : X est la limite projective des groupes , qui apparaissent comme des quotients de X. X en tant que pro-p-groupe abélien a une structure naturelle de -module.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.