Couvre les modules injectables, les modules Ox-modules, et leur pertinence dans les structures algébriques, soulignant leur importance dans la résolution des résolutions acycliques et l'informatique de la cohomologie.
Explore la théorie de Rham, les valeurs L et les extensions, y compris les formules de valeur spéciale et les exemples liés aux caractères Hecke et aux formes modulaires.
Se penche sur les théorèmes des coefficients universels en algèbre homologique, montrant leur application pratique dans le calcul des groupes d'homologie et de cohomologie.
Couvre les bases de la topologie, en mettant l'accent sur la cohomologie et les espaces de quotient, en mettant l'accent sur leurs définitions et leurs propriétés à travers des exemples et des exercices.