In quantum mechanics and its applications to quantum many-particle systems, notably quantum chemistry, angular momentum diagrams, or more accurately from a mathematical viewpoint angular momentum graphs, are a diagrammatic method for representing angular momentum quantum states of a quantum system allowing calculations to be done symbolically. More specifically, the arrows encode angular momentum states in bra–ket notation and include the abstract nature of the state, such as tensor products and transformation rules.
The notation parallels the idea of Penrose graphical notation and Feynman diagrams. The diagrams consist of arrows and vertices with quantum numbers as labels, hence the alternative term "graphs". The sense of each arrow is related to Hermitian conjugation, which roughly corresponds to time reversal of the angular momentum states (c.f. Schrödinger equation). The diagrammatic notation is a considerably large topic in its own right with a number of specialized features – this article introduces the very basics.
They were developed primarily by Adolfas Jucys (sometimes translated as Yutsis) in the twentieth century.
The quantum state vector of a single particle with total angular momentum quantum number j and total magnetic quantum number m = j, j − 1, ..., −j + 1, −j, is denoted as a ket . As a diagram this is a singleheaded arrow.
Symmetrically, the corresponding bra is . In diagram form this is a doubleheaded arrow, pointing in the opposite direction to the ket.
In each case;
the quantum numbers j, m are often labelled next to the arrows to refer to a specific angular momentum state,
arrowheads are almost always placed at the middle of the line, rather than at the tip,
equals signs "=" are placed between equivalent diagrams, exactly like for multiple algebraic expressions equal to each other.
The most basic diagrams are for kets and bras:
Arrows are directed to or from vertices, a state transforming according to:
a standard representation is designated by an oriented line leaving a vertex,
a contrastandard representation is depicted as a line entering a vertex.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En mécanique quantique, le nombre quantique de moment angulaire total paramétrise le moment angulaire total d'une particule donnée, en combinant son moment angulaire orbital et son moment angulaire intrinsèque, c'est-à-dire son spin. En notant S le spin d'une particule et L son vecteur de moment angulaire orbital, le moment angulaire total J s'écrit : Le nombre quantique associé est le nombre quantique principal de moment angulaire total j.
En mécanique quantique, le nombre quantique secondaire, noté l, également appelé nombre quantique azimutal, est l'un des quatre nombres quantiques décrivant l'état quantique d'un électron dans un atome. Il s'agit d'un nombre entier positif ou nul lié au nombre quantique principal n par la relation : . Il correspond au moment angulaire orbital de l'électron, et définit les sous-couches électroniques des atomes, tandis que le nombre quantique principal n définit les couches électroniques.
En mécanique quantique le moment cinétique est défini comme un opérateur vectoriel (noté ) à trois composantes, correspondant chacune aux différentes dimensions de l'espace (opérateurs « scalaires »). Celles-ci obéissent entre elles à certaines relations de commutation. Ainsi, alors qu'en mécanique classique les trois composantes du moment cinétique peuvent être simultanément mesurées, ceci est impossible dans le cadre quantique.
The course is conceived in the perspective of understanding the fundamentals of spintronics. This implies learning about magnetism at the quantum mechanical level, mechanisms for spin relaxation and
Students will learn the principles of mechanics to enable a better understanding of physical phenomena, such as the kinematics and dyamics of point masses and solid bodies. Students will acquire the c
In this thesis, we study systems of active particles interacting via generic torques of different nature. We analyze the phase behavior of these systems, which results from the interplay between self-propulsion, excluded-volume and torques.We tackle the pr ...
EPFL2022
, ,
The delafossite family of compounds with a triangular lattice of rare earth ions has been recently proposed as a candidate host for quantum spin liquid (QSL) states. To realize QSLs, the crystal electric field (CEF) ground state of the rare earth ions shou ...
AMER PHYSICAL SOC2020
,
By measuring the spin polarization of GeTe films as a function of light polarization we observed that the bulk states are fully spin polarized in the initial state, in strong contrast with observations for other systems with a strong spin-orbit interaction ...