Ensemble GδEn mathématiques et, en particulier, en topologie, un ensemble Gδ (lire « G delta ») est une intersection dénombrable d'ensembles ouverts. La notation introduite par Felix Hausdorff vient de l'allemand, le G désignant un ouvert (Gebiet) et le δ désignant une intersection (Durchschnitt). La notation Gδ est équivalente à celle de utilisée dans la hiérarchie de Borel. L'intersection dénombrable d'ensembles Gδ est un ensemble Gδ et l'union finie d'ensembles Gδ est un ensemble Gδ. Le complémentaire d'un ensemble Gδ est un ensemble Fσ.
Espace de CantorEn mathématiques, plus précisément en topologie, on appelle espace de Cantor l'espace produit , où est muni de la topologie discrète. C'est un espace compact métrisable à base dénombrable (en fait, pour un espace compact, être métrisable ou être à base dénombrable sont des propriétés équivalentes) et totalement discontinu, qui a la propriété suivante : Tout espace métrisable à base dénombrable totalement discontinu est homéomorphe à un sous-espace de K.
Mesure de RadonIn mathematics (specifically in measure theory), a Radon measure, named after Johann Radon, is a measure on the σ-algebra of Borel sets of a Hausdorff topological space X that is finite on all compact sets, outer regular on all Borel sets, and inner regular on open sets. These conditions guarantee that the measure is "compatible" with the topology of the space, and most measures used in mathematical analysis and in number theory are indeed Radon measures.
Propriété topologiqueEn topologie et dans les domaines connexes des mathématiques, une propriété topologique (ou invariant topologique) est une propriété sur un espace topologique qui reste invariant sous l'application d'homéomorphismes. C'est-à-dire que chaque fois qu'un espace topologique X possède cette propriété, chaque espace homéomorphe à X possède également cette propriété. De manière informelle, une propriété topologique est une propriété qui peut entièrement être exprimée à l'aide d'ensemble ouverts.
Espace de Baire (théorie des ensembles)En mathématiques, et plus précisément en topologie générale, l’espace de Baire est le nom donné — d'après René Baire — à l'ensemble de toutes les suites d'entiers, muni d'une certaine topologie. Cet espace est souvent utilisé en théorie descriptive des ensembles, au point que ses éléments sont souvent appelés des « réels ». On le note souvent B, NN, ωω, ou ωω. On appelle espace de Baire, noté NN, le produit cartésien d'un ensemble dénombrable de copies de l'ensemble N des entiers naturels, muni de la topologie produit, où chaque copie de N est munie de la topologie discrète.
Tribu boréliennevignette|Normal distribution pdf. En mathématiques, la tribu borélienne (également appelée tribu de Borel ou tribu des boréliens) sur un espace topologique est la plus petite tribu sur contenant tous les ensembles ouverts. Les éléments de la tribu borélienne sont appelés des boréliens. Le concept doit son nom à Émile Borel, qui a publié en 1898 une première exposition de la tribu borélienne de la droite réelle. La tribu borélienne peut, de manière équivalente, se définir comme la plus petite tribu qui contient tous les sous-ensembles fermés de .
Espace complètement métrisableUn espace complètement métrisable (ou espace métriquement topologiquement complet) est un espace topologique (X, T) pour lequel il existe au moins une distance d sur X telle d induit la topologie T (c'est-à-dire que X est métrisable) et fait de (X, d) un espace métrique complet. Le terme d'espace topologiquement complet est employé par certains auteurs comme synonyme despace complètement métrisable, mais parfois aussi utilisé pour d'autres classes d'espaces topologiques, comme les espaces complètement uniformisables ou les espaces Čech-complets.
Groupe localement compactUn groupe localement compact est, en mathématiques, un groupe topologique dont l'espace topologique sous-jacent est localement compact. Ces propriétés permettent de définir une mesure, dite mesure de Haar, et donc de calculer des intégrales et des moyennes ou encore une transformée de Fourier. Ces propriétés à la croisée de l'algèbre générale, de la topologie et de la théorie de la mesure sont particulièrement intéressantes, notamment pour leurs applications en physique.
Théorie descriptive des ensemblesLa théorie descriptive des ensembles est une branche des mathématiques s'intéressant aux ensembles « définissables ». Son principal but est de classifier ces ensembles par complexité. Elle a de nombreux liens avec la théorie des ensembles et a des applications dans de nombreux domaines. Historiquement, les premières questions de la théorie descriptive des ensembles sont apparues à la suite de la découverte d'une erreur par Mikhaïl Souslin en dans une démonstration de Lebesgue.
Zero-dimensional spaceIn mathematics, a zero-dimensional topological space (or nildimensional space) is a topological space that has dimension zero with respect to one of several inequivalent notions of assigning a dimension to a given topological space. A graphical illustration of a nildimensional space is a point. Specifically: A topological space is zero-dimensional with respect to the Lebesgue covering dimension if every open cover of the space has a refinement which is a cover by disjoint open sets.