Graph embeddingIn topological graph theory, an embedding (also spelled imbedding) of a graph on a surface is a representation of on in which points of are associated with vertices and simple arcs (homeomorphic images of ) are associated with edges in such a way that: the endpoints of the arc associated with an edge are the points associated with the end vertices of no arcs include points associated with other vertices, two arcs never intersect at a point which is interior to either of the arcs. Here a surface is a compact, connected -manifold.
Graphe toroïdalright|frame| Un graphe plongé sur le tore de telle façon que les arêtes ne se coupent pas. En mathématiques, et plus précisément en théorie des graphes, un graphe G est toroïdal s'il peut être plongé sur le tore, c'est-à-dire que les sommets du graphe peuvent être placés sur le tore de telle façon que les arêtes ne se coupent pas. En général dire qu'un graphe est toroïdal sous-entend également qu'il n'est pas planaire.
Nombre de croisements (théorie des graphes)vignette| Une représentation du graphe de Heawood avec trois croisements. C'est le nombre minimum de croisements parmi toutes les représentations de ce graphe, qui a donc un nombre de croisements . En théorie des graphes, le nombre de croisements d'un graphe G est le plus petit nombre d'intersections d'arêtes d'un tracé du graphe G. Par exemple, un graphe est planaire si et seulement si son nombre de croisements est nul. La détermination du nombre de croisements tient une place importante dans le tracé de graphes.
Queue numberIn the mathematical field of graph theory, the queue number of a graph is a graph invariant defined analogously to stack number (book thickness) using first-in first-out (queue) orderings in place of last-in first-out (stack) orderings. A queue layout of a given graph is defined by a total ordering of the vertices of the graph together with a partition of the edges into a number of "queues". The set of edges in each queue is required to avoid edges that are properly nested: if ab and cd are two edges in the same queue, then it should not be possible to have a < c < d < b in the vertex ordering.
Théorie topologique des graphesEn mathématiques, la théorie topologique des graphes est une branche de la théorie des graphes . Elle étudie entre autres les plongements de graphes dans des surfaces, les graphiques en tant qu'espaces topologiques ainsi que les immersions de graphes. Un plongement d'un graphe dans une surface donnée, une sphère par exemple, est une façon de dessiner ce graphe sur cette surface sans que deux arêtes se croisent. Un problème fondamental de la théorie topologique des graphes, souvent présenté comme un casse - tête mathématique, est le problème des trois chalets.
Graphe de HeawoodEn théorie des graphes, le graphe de Heawood est un graphe cubique symétrique possédant 14 sommets et 21 arêtes. Il doit son nom à Percy John Heawood, un mathématicien britannique né en 1861 et mort en 1955. Le graphe de Heawood est une (3,6)-cage, c'est-à-dire un graphe minimal en nombres de sommets ayant une maille de 6 et étant cubique. En fait, il s'agit de l'unique (3,6)-cage et sa taille coïncide avec la borne de Moore, une borne inférieure sur le nombre de sommets que peut avoir une cage.
Théorème du séparateur planaireEn théorie des graphes, le théorème du séparateur planaire, stipule que tout graphe planaire peut être divisé en parties plus petites en supprimant un petit nombre de sommets. Plus précisément, le théorème affirme qu'il existe un ensemble de sommets d'un graphe à sommets dont la suppression partitionne le graphe en sous-graphes disjoints dont chacun a au plus sommets. Une forme plus faible du théorème séparateur avec un séparateur de taille au lieu de a été prouvée à l'origine par Ungar (1951), et la forme avec la borne asymptotique plus fine sur la taille du séparateur a été prouvée pour la première fois par Lipton & Tarjan (1979).
Énigme des trois maisonsL'énigme des trois maisons, aussi appelée l'énigme de l'eau, du gaz et de l'électricité, est un jeu mathématique dont l'analyse utilise un théorème de topologie ou de théorie des graphes. Ce problème n'a pas de solution. Georges Perec le cite en 1978 dans son livre Je me souviens : . Cette énigme est déjà posée par Henry Dudeney en 1917 dans son livre Amusements in mathematics. Il précise qu'. Celle de l'article en est une, qu'il appelle eau, gaz, et électricité.
Lexique de la théorie des graphesNOTOC Acyclique graphe ne contenant pas de cycle. Adjacence une liste d'adjacence est une structure de données constituée d'un tableau dont le -ème élément correspond à la liste des voisins du -ème sommet. Adjacence une matrice d'adjacence est une matrice carrée usuellement notée , de dimensions , dont chaque élément est égal au nombre d'arêtes incidentes (ayant pour extrémités) aux sommets d'indices et (pour un graphe simple non pondéré, ). Dans le cas d'un graphe pondéré, chaque élément est égal à la somme du poids des arêtes incidentes.