Explore les signaux neuraux, le traitement EMG, les synergies musculaires et le contrôle de la prothèse à l'aide de techniques avancées de traitement des signaux.
Explore la densité spectrale de puissance, le théorème de Wiener-Khintchine, l'ergonomie et l'estimation de corrélation dans les signaux aléatoires pour le traitement du signal.
Explore l'optimisation des systèmes neuroprothétiques, y compris la restauration de rétroaction sensorielle et les stratégies de stimulation neuronale.
Introduit des outils mathématiques pour les systèmes de communication et la science des données, se concentrant sur les processus stochastiques et préparant les étudiants à des cours avancés.
Couvre des exemples de traitement du signal, de traitement du signal analogique, de modulation d'amplitude continue, de traitement d'image, de compression, de micro-systèmes et d'électronique médicale.
Explore l'aliasing dans le traitement des signaux, en mettant l'accent sur l'échantillonnage brut et la manipulation du spectre pour prévenir les distorsions.
Explore l'activité neuronale, les signaux électromagnétiques, EEG, MEG, les propriétés des signaux, les sources sonores, les méthodes d'analyse et les techniques de décodage.