Explorer l'interprétation des modèles de régression logistique, l'estimation des paramètres et la comparaison des modèles à l'aide de tests de rapport de probabilité.
Explore l'analyse de régression logistique des données sur le crabe en fer à cheval, en se concentrant sur l'interprétation du rapport de cotes et l'ajustement du modèle.
Explore la régression logistique pour les variables de réponse binaire, couvrant des sujets tels que l'interprétation du rapport de cotes et l'ajustement du modèle.
Couvre lalgorithme IWLS pour obtenir des MLE dans les modèles de régression et discute de la statistique du rapport de vraisemblance et de la déviance dans lajustement du modèle.
Examine la distinction entre association et lien de causalité dans l'analyse statistique, en soulignant les limites de l'association dans l'inferration de lien de causalité.
Explore l'inférence semi-paramétrique pour les données manquantes et non aléatoires, en abordant les défis de l'analyse statistique et en proposant un estimateur double-robuste.
Explore les répliques, les méthodes de visualisation, les mesures de tendance centrale, les valeurs aberrantes, la dispersion, les moyennes, les résidus et les estimateurs impartiaux.