Passer au contenu principal
Graph
Search
fr
en
Se Connecter
Recherche
Tous
Catégories
Concepts
Cours
Séances de cours
MOOCs
Personnes
Exercices
Publications
Start-ups
Unités
Afficher tous les résultats pour
Accueil
Concept
Homotopy colimit and limit
Graph Chatbot
Séances de cours associées (32)
Connectez-vous pour filtrer par séance de cours
Connectez-vous pour filtrer par séance de cours
Réinitialiser
Précédent
Page 1 sur 4
Suivant
Théorie de l'homotopie des complexes de chaînes
Explore la théorie de l'homotopie des complexes de chaînes, en se concentrant sur les catégories de modèles, les équivalences faibles, et l'axiome de rétractation.
Catégorie Homotopie et Functors dérivés
Explore la catégorie homotopie des complexes de chaînes et la relation entre les quasi-isomorphismes et les équivalences homotopiques de chaînes.
Structure du modèle Serre: Homotopie gauche et droite
Explore la structure du modèle Serre, en se concentrant sur les équivalences d'homotopie gauche et droite.
Homotopie de gauche comme une relation déquivalence: la relation dhomotopie dans une catégorie de modèle.
Explore la relation d'homotopie de gauche comme une relation d'équivalence dans les catégories de modèles.
Ensembles de classes d'homotopie gauche: la relation d'homotopie dans une catégorie modèle
Explore des ensembles de classes d'équivalence d'homotopie gauche de morphismes dans des catégories de modèles.
Structure du modèle Serre en haut
Explore la structure du modèle Serre sur Top, en mettant l'accent sur l'homotopie droite et gauche.
Propriétés élémentaires des catégories de modèles
Couvre les propriétés élémentaires des catégories de modèles, en mettant laccent sur la dualité entre les fibrations et les cofibrations.
Théorie de l'homotopie: cylindres et objets de chemin
Couvre les cylindres, les objets de chemin et l'homotopie dans les catégories de modèles.
Le lemme à tête blanche: équivalence d'homotopie dans les catégories de modèles
Explore le lemme de Whitehead, montrant quand un morphisme est une faible équivalence.
Topologie : Homotopie et espaces projectifs
Discute de l'homotopie, des espaces projectifs et de la propriété universelle des espaces quotients en topologie.