A screw axis (helical axis or twist axis) is a line that is simultaneously the axis of rotation and the line along which translation of a body occurs. Chasles' theorem shows that each Euclidean displacement in three-dimensional space has a screw axis, and the displacement can be decomposed into a rotation about and a slide along this screw axis.
Plücker coordinates are used to locate a screw axis in space, and consist of a pair of three-dimensional vectors. The first vector identifies the direction of the axis, and the second locates its position. The special case when the first vector is zero is interpreted as a pure translation in the direction of the second vector. A screw axis is associated with each pair of vectors in the algebra of screws, also known as screw theory.
The spatial movement of a body can be represented by a continuous set of displacements. Because each of these displacements has a screw axis, the movement has an associated ruled surface known as a screw surface. This surface is not the same as the axode, which is traced by the instantaneous screw axes of the movement of a body. The instantaneous screw axis, or 'instantaneous helical axis' (IHA), is the axis of the helicoidal field generated by the velocities of every point in a moving body.
When a spatial displacement specializes to a planar displacement, the screw axis becomes the displacement pole, and the instantaneous screw axis becomes the velocity pole, or instantaneous center of rotation, also called an instant center. The term centro is also used for a velocity pole, and the locus of these points for a planar movement is called a centrode.
The proof that a spatial displacement can be decomposed into a rotation around, and translation along, a line in space is attributed to Michel Chasles in 1830. Recently the work of Giulio Mozzi has been identified as presenting a similar result in 1763.
A screw displacement (also screw operation or rotary translation) is the composition of a rotation by an angle φ about an axis (called the screw axis) with a translation by a distance d along this axis.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Un torseur est un outil mathématique utilisé principalement en mécanique du solide indéformable, pour décrire les mouvements des solides et les actions mécaniques qu'ils subissent de la part d'un environnement extérieur. Son nom fait référence à la forme des lignes de champ du champ de vecteurs correspondant, en forme de torsade. Un certain nombre de vecteurs utilisés en mécanique sont des moments : moment d'une force, moment cinétique, moment dynamique.
In mathematics, a rigid transformation (also called Euclidean transformation or Euclidean isometry) is a geometric transformation of a Euclidean space that preserves the Euclidean distance between every pair of points. The rigid transformations include rotations, translations, reflections, or any sequence of these. Reflections are sometimes excluded from the definition of a rigid transformation by requiring that the transformation also preserve the handedness of objects in the Euclidean space.
Une isométrie affine est une transformation bijective d'un espace affine euclidien dans un autre qui est à la fois une application affine et une isométrie (c'est-à-dire une bijection conservant les distances). Si cette isométrie conserve aussi l'orientation, on dit que c'est un déplacement. Si elle inverse l'orientation, il s'agit d'un antidéplacement. Les déplacements sont les composés de translations et rotations. Les réflexions sont des antidéplacements. On désigne par le plan (, plus précisément, un plan affine réel euclidien).
La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
Many problems in robotics are fundamentally problems of geometry, which have led to an increased research effort in geometric methods for robotics in recent years. The results were algorithms using the various frameworks of screw theory, Lie algebra, and d ...
Cavitation is a topic that has long been of interest due to the large and growing range of applications associated with it. This is mainly because the collapse of cavitation bubbles releases a considerable amount of energy into the surrounding environment. ...
EPFL2023
, ,
Body-centered-cubic (BCC) high entropy alloys (HEAs) can show exceptionally high strength up to high temperatures. Mechanistic theories are needed to guide alloy discovery within the immense multicomponent HEA compositional space. Here, two new theories fo ...