Taux de défaillanceLe taux de défaillance, ou taux de panne, est une expression relative à la fiabilité des équipements et de chacun de leurs composants. Son symbole est la lettre grecque λ (lambda). Le taux de défaillance d'un équipement à l'instant t est la limite, si elle existe, du quotient de la probabilité conditionnelle que l'instant T de la (première) défaillance de cet équipement soit compris dans l'intervalle de temps donné [t, t + Δt] par la durée Δt de cet intervalle, lorsque Δt tend vers zéro, en supposant que l'entité soit disponible au début de l'intervalle de temps.
Hazard ratioIn survival analysis, the hazard ratio (HR) is the ratio of the hazard rates corresponding to the conditions characterised by two distinct levels of a treatment variable of interest. For example, in a clinical study of a drug, the treated population may die at twice the rate per unit time of the control population. The hazard ratio would be 2, indicating higher hazard of death from the treatment. A scientific paper might utilise a Hazard Ratio (HR) to state something as follows.
Survival functionThe survival function is a function that gives the probability that a patient, device, or other object of interest will survive past a certain time. The survival function is also known as the survivor function or reliability function. The term reliability function is common in engineering while the term survival function is used in a broader range of applications, including human mortality. The survival function is the complementary cumulative distribution function of the lifetime.
Régression de CoxLa régression de Cox (modèle à risque proportionnel) est une classe de modèles de survie en statistique. Les modèles de survie étudient le temps écoulé avant qu'un événement ne survienne. Historiquement, dans le modèle de Cox, cet événement est le décès de l'individu, c'est pourquoi on parle généralement de survie et de décès. Au cours des années, l'utilisation du modèle s'est étendue à d'autres situations, l'événement peut donc être de quelconque nature : il peut s'agir de la récidive d'une maladie, ou à l'inverse d'une guérison.
Temps moyen entre pannesvignette|Représentation de l'état d'un système alternant entre panne et bon fonctionnement. Un écart entre deux pannes est représenté en bleu. Le temps moyen entre pannes ou durée moyenne entre pannes, souvent désigné par son sigle anglais MTBF (mean time between failures), est une des valeurs qui indiquent la fiabilité d'un composant, d'un produit ou d'un système. C'est la moyenne arithmétique du temps de fonctionnement entre les pannes d'un système réparable.
Loi de WeibullEn théorie des probabilités, la loi de Weibull, nommée d'après Waloddi Weibull en 1951, est une loi de probabilité continue. La loi de Weibull est un cas spécial de loi d'extremum généralisée au même titre que la loi de Gumbel ou la loi de Fréchet. Avec deux paramètres (pour x > 0), la densité de probabilité est : où k > 0 est le paramètre de forme et λ > 0 le paramètre d'échelle de la distribution.
Censure (statistiques)En fiabilité, la censure est le fait de prendre en compte des systèmes non-défaillants pour établir la loi de fiabilité. Plus généralement, le terme s'applique lorsque l'on ne connaît pas avec précision la date de défaillance, soit que la défaillance ne soit pas encore survenue, soit qu'elle n'ait pas été enregistrée avec précision. La censure est une information qui doit être intégrée dans le modèle de fiabilité, même si cette information est moins riche qu'un instant de défaillance défini.
Medical statisticsMedical statistics deals with applications of statistics to medicine and the health sciences, including epidemiology, public health, forensic medicine, and clinical research. Medical statistics has been a recognized branch of statistics in the United Kingdom for more than 40 years but the term has not come into general use in North America, where the wider term 'biostatistics' is more commonly used. However, "biostatistics" more commonly connotes all applications of statistics to biology.
Loi Gamma généraliséeEn théorie des probabilités et en statistiques, une loi Gamma généralisée est un type de loi de probabilité de variables aléatoires réelles positives avec deux paramètres de forme (et un paramètre d'échelle), qui est une extension de la loi Gamma avec un paramètre de forme additionnel. Comme de nombreuses lois sont utilisées comme modèles paramétriques dans l'analyse de survie (telles que la loi exponentielle, la loi de Weibull et la loi Gamma) sont des cas particuliers de la loi Gamma généralisée, elle est parfois utilisée pour déterminer quel modèle paramétrique est adapté pour un jeu de données.
Courbe en baignoirethumb|right|350px|Exemple de courbe de fiabilité: en vert les incidents aléatoires, en rouge la courbe liée au rodage, en jaune la courbe d'usure, en bleu la courbe en baignoire résultante. En ingénierie la courbe en baignoire est une représentation classique de la probabilité d'incidents pour des équipements ou des systèmes.