Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We prove a sharp quantitative version of the Faber–Krahn inequality for the short-time Fourier transform (STFT). To do so, we consider a deficit which measures by how much the STFT of a function fails to be optimally concentrated on an arbitrary set of positive, finite measure. We then show that an optimal power of the deficit controls both the -distance of to an appropriate class of Gaussians and the distance of to a ball, through the Fraenkel asymmetry of . Our proof is completely quantitative and hence all constants are explicit. We also establish suitable generalizations of this result in the higher-dimensional context.
Martin Alois Rohrmeier, Johannes Hentschel, Gabriele Cecchetti, Sabrina Laneve, Ludovica Schaerf
, , , ,
Till Junge, Ali Falsafi, Martin Ladecký