In mathematics, particularly in order theory, a pseudocomplement is one generalization of the notion of complement. In a lattice L with bottom element 0, an element x ∈ L is said to have a pseudocomplement if there exists a greatest element x* ∈ L with the property that x ∧ x* = 0. More formally, x* = max{ y ∈ L | x ∧ y = 0 }. The lattice L itself is called a pseudocomplemented lattice if every element of L is pseudocomplemented. Every pseudocomplemented lattice is necessarily bounded, i.e. it has a 1 as well. Since the pseudocomplement is unique by definition (if it exists), a pseudocomplemented lattice can be endowed with a unary operation * mapping every element to its pseudocomplement; this structure is sometimes called a p-algebra. However this latter term may have other meanings in other areas of mathematics. In a p-algebra L, for all The map x ↦ x* is antitone. In particular, 0* = 1 and 1* = 0. The map x ↦ x** is a closure. x* = x***. (x∨y)* = x* ∧ y*. (x∧y)** = x** ∧ y**. The set S(L) ≝ { x** | x ∈ L } is called the skeleton of L. S(L) is a ∧-subsemilattice of L and together with x ∪ y = (x∨y)** = (x* ∧ y*)* forms a Boolean algebra (the complement in this algebra is ). In general, S(L) is not a sublattice of L. In a distributive p-algebra, S(L) is the set of complemented elements of L. Every element x with the property x = 0 (or equivalently, x** = 1) is called dense. Every element of the form x ∨ x* is dense. D(L), the set of all the dense elements in L is a filter of L. A distributive p-algebra is Boolean if and only if D(L) = {1}. Pseudocomplemented lattices form a variety; indeed, so do pseudocomplemented semilattices. Every finite distributive lattice is pseudocomplemented. Every Stone algebra is pseudocomplemented. In fact, a Stone algebra can be defined as a pseudocomplemented distributive lattice L in which any of the following equivalent statements hold for all S(L) is a sublattice of L; (x∧y)* = x* ∨ y*; (x∨y)** = x** ∨ y**; x* ∨ x** = 1. Every Heyting algebra is pseudocomplemented.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.