Concepts associés (39)
Numération mésopotamienne
thumb|Tablette YBC 7289 () avec l'écriture en numération sexagésimale de 1/2 et des valeurs approchées de et /2 précises jusqu'à la 6 décimale: • ≈1,414 213 56... • 1+24/60+51/60+10/60=1,414 21 • /2 ≈ 42/60 + 25/60 + 35/60 La numération mésopotamienne est un système de numération en base soixante utilisé en Mésopotamie dès le . Ce système y perdure en se perfectionnant, au moins jusqu'au , durant l'époque séleucide. Il est repris par les civilisations grecques et arabes pour l'écriture des nombres en astronomie.
Numération maya
vignette|Représentation des vingt chiffres mayas à l'aide de traits et points. La numération maya est une numération de base vingt pratiquée dans la civilisation mésoaméricaine maya. Durant la période classique et post-classique, du , on a la trace d'une numération de position écrite savante, à sous-base quinaire, vigésimale à une irrégularité près. Les chiffres constitutifs de cette numération, de 1 à 19, possèdent plusieurs écritures possibles, ou bien sous forme de glyphes céphalomorphes, ou à l'aide d'un système répétitivo-additif de traits valant 5 et de points valant 1.
Nombre irrationnel
Un nombre irrationnel est un nombre réel qui n'est pas rationnel, c'est-à-dire qu'il ne peut pas s'écrire sous la forme d'une fraction a/b, où a et b sont deux entiers relatifs (avec b non nul). Les nombres irrationnels peuvent être caractérisés de manière équivalente comme étant les nombres réels dont le développement décimal n'est pas périodique ou dont le développement en fraction continue est infini. On distingue, parmi les nombres irrationnels, deux sous-ensembles complémentaires : les nombres algébriques non rationnels et les nombres transcendants.
Système vicésimal
vignette|Chiffres de Kaktovik: un système vicésimal Le système vicésimal (ou vigésimal) est un système de numération utilisant la base vingt. Dans les langues du monde entier il est très souvent couplé au système quinaire. Vingt correspond au nombre de doigts et d'orteils que possède l'être humain. On peut distinguer le système vicésimal pur, ayant exclusivement pour principe la base vingt, et le système vicésimal partiel, résultant de la combinaison d'une base dix avec une base vingt.
Système de numération
vignette|Table d'équivalence entre le système de numération de Kaktovik (utilisant une base 20) et le système décimal. Un système de numération est un ensemble de règles qui régissent une, voire plusieurs numérations données. De façon plus explicite, c'est un ensemble de règles d'utilisation des signes, des mots ou des gestes permettant d'écrire, d'énoncer ou de mimer les nombres, ces derniers étant nés, sous leur forme écrite, en même temps que l'écriture, de la nécessité d'organiser les récoltes, le commerce et la datation.
Numération romaine
La numération romaine est un système de numération additive utilisé par les anciens Romains. Les nombres sont représentés à l'aide de symboles combinés entre eux, notamment par les signes , , , , , et , appelés chiffres romains, qui représentent respectivement les nombres 1, 5, 10, 50, 100, 500 et . Ces ne permettaient pas à leurs utilisateurs de faire des calculs, qui étaient effectués au moyen d'abaques. Un nombre écrit en chiffres romains se lit de gauche à droite.
Chiffre
vignette|329x329px|Les dix chiffres des chiffres arabes, par ordre de valeur. Un chiffre est un signe d'écriture utilisé seul ou en combinaison pour représenter des nombres entiers. Dans un système de numération positionnel comme le système décimal, un petit nombre de chiffres suffit pour exprimer n'importe quelle valeur. Le nombre de chiffres du système est la base. Le système décimal, le plus courant des systèmes de numération, comporte dix chiffres représentant les nombres de zéro à neuf.
Algorism
Algorism is the technique of performing basic arithmetic by writing numbers in place value form and applying a set of memorized rules and facts to the digits. One who practices algorism is known as an algorist. This positional notation system has largely superseded earlier calculation systems that used a different set of symbols for each numerical magnitude, such as Roman numerals, and in some cases required a device such as an abacus. The word algorism comes from the name Al-Khwārizmī (c.
Séparateur décimal et séparateur de milliers
Un séparateur décimal est un symbole utilisé pour partager la partie décimale de la partie entière d'un nombre décimal. Ce symbole dépend des conventions régionales du système de numération ; communément, il est représenté par un point dans les systèmes anglo-saxons et par une virgule dans les autres systèmes. Le séparateur de milliers est lui utilisé pour faciliter la lecture des grands nombres en regroupant par ordre de mille. Au Moyen Âge, avant l'apparition de l'imprimerie, les mathématiciens utilisaient une barre (« ̄ ») pour surligner la partie entière d'un nombre.
Système binaire
Le système binaire (du latin binārĭus, « double ») est le système de numération utilisant la base 2. On nomme couramment bit (de l'anglais binary digit, soit « chiffre binaire ») les chiffres de la numération binaire positionnelle. Un bit peut prendre deux valeurs, notées par convention 0 et 1. Le système binaire est utile pour représenter le fonctionnement de l'électronique numérique utilisée dans les ordinateurs. Il est donc utilisé par les langages de programmation de bas niveau.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.