Biais de publicationUn biais de publication désigne en science le fait que les chercheurs et les revues scientifiques ont bien plus tendance à publier des expériences ayant obtenu un résultat positif (statistiquement significatif) que des expériences ayant obtenu un résultat négatif (soutenant l'hypothèse nulle). Ce biais de publication donne aux lecteurs une perception biaisée (vers le positif) de l'état de la recherche. Plusieurs causes au biais de publication ont été avancées. En 1977, Michael J.
Test statistiqueEn statistiques, un test, ou test d'hypothèse, est une procédure de décision entre deux hypothèses. Il s'agit d'une démarche consistant à rejeter ou à ne pas rejeter une hypothèse statistique, appelée hypothèse nulle, en fonction d'un échantillon de données. Il s'agit de statistique inférentielle : à partir de calculs réalisés sur des données observées, on émet des conclusions sur la population, en leur rattachant des risques d'être erronées. Hypothèse nulle L'hypothèse nulle notée H est celle que l'on considère vraie a priori.
Étude cas-témoinsUne étude cas-témoins est une étude statistique observationnelle rétrospective utilisée en épidémiologie. Les études cas-témoins sont utilisées pour mettre en évidence des facteurs qui peuvent contribuer à l'apparition d'une maladie en comparant des sujets qui ont cette maladie (les cas) avec des sujets qui n'ont pas la maladie mais qui sont similaires par ailleurs (les témoins).
Test ZEn statistique, un test Z est un terme générique désignant tout test statistique dans lequel la statistique de test suit une loi normale sous l'hypothèse nulle. On considère un n-échantillon avec et un risque . Si l'on teste La statistique de test sous l'hypothèse nulle est : qui suit une loi normale Si , la réalisation de la statistique de test, est supérieur au quantile d'ordre de la loi alors on rejette l'hypothèse nulle. Si l'on teste Si est supérieur au quantile d'ordre de la loi alors on rejette l'hypothèse nulle.
Cohen's hIn statistics, Cohen's h, popularized by Jacob Cohen, is a measure of distance between two proportions or probabilities. Cohen's h has several related uses: It can be used to describe the difference between two proportions as "small", "medium", or "large". It can be used to determine if the difference between two proportions is "meaningful". It can be used in calculating the sample size for a future study. When measuring differences between proportions, Cohen's h can be used in conjunction with hypothesis testing.
Ronald Aylmer FisherSir Ronald Aylmer Fisher est un biologiste et statisticien britannique, né à East Finchley le et mort le . Richard Dawkins le considère comme et Anders Hald comme l'homme qui a – . Pour Bradley Efron, il est le statisticien le plus important du . Dans le domaine de la statistique, il introduit de nombreux concepts-clés tels que le maximum de vraisemblance, l'information de Fisher et l'analyse de la variance, les plans d'expériences ou encore la notion de statistique exhaustive.