Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore comment les variables instrumentales corrigent les biais à partir des erreurs de mesure et de la causalité inverse dans les modèles de régression.
Se penche sur la mesure des effets de l'apprentissage dans l'éducation numérique et l'analyse, couvrant les questions de recherche, les variables, la conception expérimentale et les solutions de biais.
Couvre les bases de la conception et de l'analyse expérimentales, en mettant l'accent sur les techniques statistiques comme l'ANOVA, la régression, la médiation et la modération.
Couvre la régression linéaire, de lélaboration de questions de recherche à linterprétation de R-carré et en ajoutant des prédicteurs pour améliorer le modèle.
Couvre les facteurs de vision spéculaire, l'échange radiatif, le transfert d'énergie et les méthodes d'intégration numérique dans le rayonnement thermique.
Discute de la géométrie des moindres carrés, en explorant les perspectives des lignes et des colonnes, les hyperplans, les projections, les résidus et les vecteurs uniques.
Explorer la conception expérimentale pour mesurer les résultats d'apprentissage et discuter des biais, de l'équivalence de groupe et des conceptions à l'intérieur des sujets.
Déplacez-vous dans les bases de la thermodynamique, calculez les changements d'énergie, construisez des tables et utilisez les relations Maxwell pour les relations thermodynamiques.