On shell and off shellIn physics, particularly in quantum field theory, configurations of a physical system that satisfy classical equations of motion are called "on the mass shell" or simply more often on shell; while those that do not are called "off the mass shell", or off shell. In quantum field theory, virtual particles are termed off shell because they do not satisfy the energy–momentum relation; real exchange particles do satisfy this relation and are termed on shell (mass shell).
Generalized functionIn mathematics, generalized functions are objects extending the notion of functions. There is more than one recognized theory, for example the theory of distributions. Generalized functions are especially useful in making discontinuous functions more like smooth functions, and describing discrete physical phenomena such as point charges. They are applied extensively, especially in physics and engineering. A common feature of some of the approaches is that they build on operator aspects of everyday, numerical functions.
Quantification (physique)En physique, la quantification est une procédure permettant de construire une théorie quantique d'un champ à partir d'une théorie classique de ce champ. On parle parfois de seconde quantification pour la distinguer du principe de correspondance permettant de construire la mécanique quantique à partir de la mécanique classique, et que la procédure de quantification généralise. Le terme de quantification du champ est également utilisé, par exemple lorsque l'on parle de la « quantification du champ électromagnétique », dans laquelle les photons sont vus comme les quanta du champ.
Théorie des quantaLa théorie des quanta est le nom donné à une théorie physique qui tente de modéliser le comportement de l'énergie à très petite échelle à l'aide des quanta (pluriel du terme latin quantum), quantités discontinues. Connue en anglais sous le nom d' «ancienne théorie quantique» (old quantum theory), son introduction a bousculé plusieurs idées reçues en physique de l'époque, au début du . Elle a servi de pont entre la physique classique et la physique quantique, dont la pierre angulaire, la mécanique quantique, est née en 1925.
Dimensional regularizationNOTOC In theoretical physics, dimensional regularization is a method introduced by Giambiagi and Bollini as well as – independently and more comprehensively – by 't Hooft and Veltman for regularizing integrals in the evaluation of Feynman diagrams; in other words, assigning values to them that are meromorphic functions of a complex parameter d, the analytic continuation of the number of spacetime dimensions. Dimensional regularization writes a Feynman integral as an integral depending on the spacetime dimension d and the squared distances (xi−xj)2 of the spacetime points xi, .
UnitaritéEn mécanique quantique, l'unitarité désigne le fait que l'évolution de la fonction d'onde au cours du temps doit être compatible avec l'interprétation probabiliste qui lui est associée. La fonction d'onde d'un système quantique, comme l'électron par exemple, permet de déterminer la probabilité de présence de celui-ci dans une petite boîte de volume centrée en par Et comme la probabilité totale de trouver le système quelque part doit être de un, il en découle qu'on doit avoir en intégrant sur tout l'espace.
Schwinger functionIn quantum field theory, the Wightman distributions can be analytically continued to analytic functions in Euclidean space with the domain restricted to the ordered set of points in Euclidean space with no coinciding points. These functions are called the Schwinger functions (named after Julian Schwinger) and they are real-analytic, symmetric under the permutation of arguments (antisymmetric for fermionic fields), Euclidean covariant and satisfy a property known as reflection positivity.
Nombre de GrassmannEn physique mathématique, un nombre de Grassmann — ainsi nommé d'après Hermann Günther Grassmann mais aussi appelé supernombre — est un élément de l'algèbre extérieure — ou algèbre de Grassmann — d'un espace vectoriel, le plus souvent sur les nombres complexes. Dans le cas particulier où cet espace est une droite vectorielle réelle, un tel nombre s'appelle un nombre dual. Les nombres de Grassmann ont d'abord été employés en physique pour exprimer une représentation par intégrales de chemins pour les champs de fermions, mais sont à présent largement utilisés pour décrire le sur lequel on définit une supersymétrie.
InstantonEn mécanique quantique et en théorie quantique des champs, un instanton est une solution classique des équations du mouvement c'est-à-dire correspondant à un extremum local de l'action qui définit la théorie, mais pas à un minimum global. Puisque la théorie perturbative considère la plupart du temps un développement en puissance de la constante de couplage de la théorie au voisinage du minimum global de l'action, appelé l'état fondamental, les instantons sont inaccessibles à ce développement et constituent de ce point de vue des phénomènes non-perturbatifs.
Hamilton's principleIn physics, Hamilton's principle is William Rowan Hamilton's formulation of the principle of stationary action. It states that the dynamics of a physical system are determined by a variational problem for a functional based on a single function, the Lagrangian, which may contain all physical information concerning the system and the forces acting on it. The variational problem is equivalent to and allows for the derivation of the differential equations of motion of the physical system.