G-structure on a manifoldIn differential geometry, a G-structure on an n-manifold M, for a given structure group G, is a principal G-subbundle of the tangent frame bundle FM (or GL(M)) of M. The notion of G-structures includes various classical structures that can be defined on manifolds, which in some cases are tensor fields. For example, for the orthogonal group, an O(n)-structure defines a Riemannian metric, and for the special linear group an SL(n,R)-structure is the same as a volume form.
Élie CartanÉlie Joseph Cartan ( – ) est un mathématicien français qui a effectué des travaux fondamentaux dans la théorie des groupes de Lie et leurs applications géométriques. Il a également contribué de manière significative à la physique mathématique, à la géométrie différentielle, aux équations différentielles, à la théorie des groupes et à la mécanique quantique. Il est largement considéré comme l'un des plus grands mathématiciens du . Il a défendu avec succès sa thèse sur les groupes de Lie à l'École normale supérieure en 1894.
Shiing-Shen ChernShiing-shen Chern (), né le à Jiaxing et mort le à Tianjin, est un mathématicien chinois, et naturalisé américain, considéré comme un des meilleurs spécialistes de la topologie différentielle et de la géométrie différentielle au . Remarque de prononciation : l'écriture Chern utilise la translittération Gwoyeu Romatzyh, dont le r ne se prononce pas et indique seulement que la syllabe considérée est prononcée au deuxième ton. Chern est né à Jiaxing dans la province de Zhejiang.
Géométrie différentielle des surfacesEn mathématiques, la géométrie différentielle des surfaces est la branche de la géométrie différentielle qui traite des surfaces (les objets géométriques de l'espace usuel E3, ou leur généralisation que sont les variétés de dimension 2), munies éventuellement de structures supplémentaires, le plus souvent une métrique riemannienne. Outre les surfaces classiques de la géométrie euclidienne (sphères, cônes, cylindres, etc.
Solder formIn mathematics, more precisely in differential geometry, a soldering (or sometimes solder form) of a fiber bundle to a smooth manifold is a manner of attaching the fibers to the manifold in such a way that they can be regarded as tangent. Intuitively, soldering expresses in abstract terms the idea that a manifold may have a point of contact with a certain model Klein geometry at each point. In extrinsic differential geometry, the soldering is simply expressed by the tangency of the model space to the manifold.
Fibré des repèresEn géométrie différentielle, un fibré des repères est un certain type de fibré principal qui correspond à un fibré vectoriel sur une variété différentielle. Les points du fibré des repères sont les repères linéaires des fibres du fibré vectoriel correspondant. L'exemple le plus commun de fibré des repères est le fibré des repères tangents correspondant au fibré tangent d'une variété différentielle.
Tenseur de torsionEn géométrie différentielle, la torsion constitue, avec la courbure, une mesure de la façon dont une base mobile évolue le long des courbes, et le tenseur de torsion en donne l'expression générale dans le cadre des variétés, c'est-à-dire des « espaces courbes » de toutes dimensions. La torsion se manifeste en géométrie différentielle classique comme une valeur numérique associée à chaque point d'une courbe de l'espace euclidien.
Surface (géométrie analytique)En géométrie analytique, on représente les surfaces, c'est-à-dire les ensembles de points sur lequel il est localement possible de se repérer à l'aide de deux coordonnées réelles, par des relations entre les coordonnées de leurs points, qu'on appelle équations de la surface ou par des représentations paramétriques. Cet article étudie les propriétés des surfaces que cette approche (appelée souvent extrinsèque) permet de décrire. Pour des résultats plus approfondis, voir Géométrie différentielle des surfaces.
Differentiable curveDifferential geometry of curves is the branch of geometry that deals with smooth curves in the plane and the Euclidean space by methods of differential and integral calculus. Many specific curves have been thoroughly investigated using the synthetic approach. Differential geometry takes another path: curves are represented in a parametrized form, and their geometric properties and various quantities associated with them, such as the curvature and the arc length, are expressed via derivatives and integrals using vector calculus.
Connexion affineEn mathématiques, et plus précisément en géométrie différentielle, une connexion affine est un objet géométrique défini sur une variété différentielle, qui connecte des espaces tangents voisins, et permet ainsi à des champs de vecteurs tangents d'être dérivés comme si c'étaient des fonctions définies sur la variété et prenant leurs valeurs dans un unique espace vectoriel.