Concept

Weierstrass M-test

In mathematics, the Weierstrass M-test is a test for determining whether an infinite series of functions converges uniformly and absolutely. It applies to series whose terms are bounded functions with real or complex values, and is analogous to the comparison test for determining the convergence of series of real or complex numbers. It is named after the German mathematician Karl Weierstrass (1815-1897). Weierstrass M-test. Suppose that (fn) is a sequence of real- or complex-valued functions defined on a set A, and that there is a sequence of non-negative numbers (Mn) satisfying the conditions for all and all , and converges. Then the series converges absolutely and uniformly on A. The result is often used in combination with the uniform limit theorem. Together they say that if, in addition to the above conditions, the set A is a topological space and the functions fn are continuous on A, then the series converges to a continuous function. Consider the sequence of functions Since the series converges and Mn ≥ 0 for every n, then by the Cauchy criterion, For the chosen N, (Inequality (1) follows from the triangle inequality.) The sequence Sn(x) is thus a Cauchy sequence in R or C, and by completeness, it converges to some number S(x) that depends on x. For n > N we can write Since N does not depend on x, this means that the sequence Sn of partial sums converges uniformly to the function S. Hence, by definition, the series converges uniformly. Analogously, one can prove that converges uniformly. A more general version of the Weierstrass M-test holds if the common codomain of the functions (fn) is a Banach space, in which case the premise is to be replaced by where is the norm on the Banach space. For an example of the use of this test on a Banach space, see the article Fréchet derivative.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.