La convergence uniforme d'une suite de fonctions est une forme de convergence plus exigeante que la convergence simple. La convergence devient uniforme quand toutes les suites avancent vers leur limite respective avec une sorte de « mouvement d'ensemble ». Dans le cas de fonctions numériques d'une variable, la notion prend une forme d'« évidence » géométrique : le graphe de la fonction f se « rapproche » de celui de la limite. Soient X un ensemble, (Y, d) un espace métrique, et A un sous-ensemble de X. Soient une suite de fonctions définies sur X et à valeurs dans Y, et f une fonction définie sur X à valeurs dans Y. On dit que la suite (f) converge uniformément vers f sur A si : Remarque : en introduisant la notation (dans laquelle la borne supérieure peut a priori être infinie), la propriété (1) est équivalente à : Autrement dit, (f) converge uniformément vers f sur A si et seulement si On peut se demander a posteriori quelle est la différence entre la convergence simple d'une suite de fonctions et la convergence uniforme. En effet, la suite de fonctions (f) converge simplement vers f sur A si : Ici, l'indice dépend de alors que dans la proposition , l'indice n'en dépend pas. Cette différence peut paraître anodine mais elle est pourtant essentielle : Dans le cas de la convergence simple, pour tout élément x de A, on peut trouver un rang à partir duquel la distance devient très petite. A priori, si l'on choisit un y dans A autre que x alors le rang à partir duquel la distance devient très petite peut être différent. Dans le cas de la convergence uniforme, on peut trouver un rang à partir duquel la distance devient très petite pour n'importe quel à la fois. Cette condition est donc beaucoup plus forte. En particulier, une suite de fonctions qui converge uniformément sur un ensemble converge simplement sur celui-ci. La réciproque est en général fausse sauf dans des cas très particuliers (voir Théorèmes de Dini). Ainsi la suite des fonctions converge simplement mais pas uniformément sur ]–1, 1[, un problème survenant aux bords de l'intervalle.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (32)
MATH-206: Analysis IV
En son coeur, c'est un cours d'analyse fonctionnelle pour les physiciens et traite les bases de théorie de mesure, des espaces des fonctions et opérateurs linéaires.
MATH-101(g): Analysis I
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
MATH-100(b): Advanced analysis I
Dans ce cours, nous étudierons les notions fondamentales de l'analyse réelle, ainsi que le calcul différentiel et intégral pour les fonctions réelles d'une variable réelle.
Afficher plus
Publications associées (251)
Concepts associés (29)
Application lipschitzienne
En analyse mathématique, une application lipschitzienne (du nom de Rudolf Lipschitz) est une application possédant une certaine propriété de régularité qui est plus forte que la continuité. Intuitivement, c'est une fonction qui est limitée dans sa manière d'évoluer. Tout segment reliant deux points du graphe d'une telle fonction aura une pente inférieure, en valeur absolue, à une constante appelée constante de Lipschitz. Les fonctions lipschitziennes sont un cas particulier de fonctions höldériennes.
Fonction analytique
vignette|Tracé du module de la fonction gamma (son prolongement analytique) dans le plan complexe. En mathématiques, et plus précisément en analyse, une fonction analytique est une fonction d'une variable réelle ou complexe qui est développable en série entière au voisinage de chacun des points de son domaine de définition, c'est-à-dire que pour tout de ce domaine, il existe une suite donnant une expression de la fonction, valable pour tout assez proche de , sous la forme d'une série convergente : Toute fonction analytique est dérivable de dérivée analytique, ce qui implique que toute fonction analytique est indéfiniment dérivable, mais la réciproque est fausse en analyse réelle.
Continuité uniforme
En topologie, la continuité uniforme (ou l'uniforme continuité) est une propriété plus forte que la continuité, et se définit dans les espaces métriques ou plus généralement les espaces uniformes. Contrairement à la continuité, la continuité uniforme n'est pas une notion « purement topologique » c'est-à-dire ne faisant intervenir que des ouverts : sa définition dépend de la distance ou de la structure uniforme. Le contexte typique de la définition de la continuité uniforme est celui des espaces métriques. N.
Afficher plus
MOOCs associés (14)
Analyse I
Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond
Analyse I (partie 1) : Prélude, notions de base, les nombres réels
Concepts de base de l'analyse réelle et introduction aux nombres réels.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.